
SREM: A Service Requirements Elicitation Mechanism based on Ontology

Jian Xiang Lin Liu Wei Qiao Jingwei Yang
School of Software, Tsinghua University, Beijing, China, 100084

{xiangj05, qiaow05}@mails.tsinghua.edu.cn, linliu@tsinghua.edu.cn

Abstract
The Service-Oriented Computing paradigm aims to

support automated discovery and selection of web
services according to user’s requirements. At present,
user’s requirements are often represented in certain
existing standard interoperable service description
languages such as WSDL/OWL-S. However, general
service requestors may find such languages hard to use
directly due to the reason that service requirements are
often partially elicited and fragmented.

In this paper, we propose an automated Service
Requirements Elicitation Mechanism (SREM) to help
extract and accumulate relevant knowledge on service
requirements. First, the SREM elicitation approach
proposes to use a list of questions to narrow generic
service requirements down to specific expressions of
user preferences. Then, a service requirements and
capability ontology is adopted to capture services
requirements in breadth and precision. By integrating
service requirements issued by different requestors,
SREM provides non-trivial requirements guidelines
and heuristic rules on service publication and
discovery, also provided is a service requirements
analysis mechanism that improves the accuracy of
service discovery and efficiency of service composition
continuously.

1. Introduction

Requirements elicitation for services imposes
different challenges from conventional software
requirements elicitation process. In conventional
software requirements engineering, elicitation takes a
“face-to-face” mode. That is, there is a group of
targeted customer, from whom the requirements
engineers can obtain original requirements
information. But during the services requirements
process, there is often no fixed target, the requirements
elicitation often takes a “back-to-back” mode, services
providers and service requestors conduct double blind
search. The success of services as a business and
computational paradigm depends on how well the two
sides understand requirements and constraints of each
other. Ill-defined and misrepresented requirements of
service may lead to unbalanced service-level
agreement, or no agreement can be formed at all. Thus,

Requirements engineering for services plays a
definitive role during the service engineering life cycle.
In order to achieve efficient service design, publication,
discovery, binding and evolution, we need
requirements facilities that can handle service
requirements issues automatically and systematically.

Key research questions regarding requirements
elicitation from the service provider’s perspective
should include: How a prospective service provider can
map its core competence into a maximum set of users
requirements that can be satisfied by it? Where and
how can we acquire and accumulate valuable service
requirements knowledge? Is it from existing published
service profiles, from Service-Level Agreements, or
from logs of user queries? Unfortunately, there is no
systematic approach in requirements engineering or
service engineering that can address these issues yet.
We need a mechanism to guide the service providers
through the process of transforming legacy systems
into easily reusable and customizable services
according to user’s real needs, which should lead us
into a win-win situation in the service-oriented world.

In this paper, we propose a service requirements
elicitation mechanism, SREM, to facilitate the process
of service requirements elicitation. SREM is based on a
service requirements ontology SRMO, which inherits
some basic concepts from the agent-oriented
requirements modeling framework i* for early-phase
requirements analysis. SREM also includes a set of
questions, which can be organized into a dynamic
questionnaire to draw service requirements details
from requestors. Based on answers to this
questionnaire, a graphical requirements model
describing key elements and structure of each service
requirements can be built. Besides requirements
modelling, SREM includes a mechanism to analyze and
integrate individual requirements models. First,
requirements models with related concepts are
correlated and connected. Then such individual
requirements models are merged to form domain-
specific requirements network model based on
consensus. This integrated requirements network
model offers richer information than the original
requirements fragments. It provides a service
requirements analysis mechanism that improves the

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

accuracy of service discovery and efficiency of service
composition. By conducting the elicitation process
iteratively for service in specific domains,
requirements knowledge can be elaborated for not only
one single service but the evolving service world.
Moreover, through mashing-up requirements from
various past, current and prospective service
requestors, knowledge about the preference of service
requestors can be accumulated. The provider who has
the most popular components in the network will
become the most competitive among other providers.
By tracing upstream within the hierarchical service
requirements model, service provider may figure out
how to promote its position in the market place.

The structure of the paper is arranged as the
following: Section 2 introduces SRMO, the ontology
for service requirements elicitation, which is the
foundation stone for SREM. Section 3 describes in
detail the elicitation mechanism. Section 4 presents the
requirements reconciliation process and related
heuristics. Section 5 introduces experiments and
example of applying SREM. Section 6 discusses related
work. Section 7 concludes the paper.

2. Introduction to SREM

SREM includes three major components: Service
Requirements Modeling Ontology (SRMO) [10],
Service Requirements Elicitation Process (SREP), and
Service Requirements Reconciliation Process (SRRP).
SRMO defines the ontology for requirements
modeling; it provides conceptual guideline for the
other two. SREP directs the process for eliciting
requirements details and structural information with
service requestor; SRRP is the reconciliation process
used to integrate all requirements instances to build a
requirements knowledge repository which contain
heuristics for service publication.

2.1 Service Requirements Modeling Ontology
(SRMO)

Figure 1 shows the concepts in the proposed
service requirements ontology. It models service at a
higher level of abstraction than current service
ontology such as, OWL-S, which focus more on
implementation details irrelevant to general users. The
level of abstraction adopted by the proposed
mechanism aims to achieve more precise profiling of
service requirements. At the same time, SRMO are
designed to be easily mapped to OWL-S description
when necessary. Individual service requests can be
easily collected and crystallized as requirements
knowledge applicable for future use.

Major concepts in SRMO include: Actor, Goal,
Task, and Quality. Major properties of these concepts
include:

Figure 1. Service Requirements Modeling Ontology

2.2 Terminology and Definition
Definition 1. A = {a1, …, an} is a set of Actors. If a ∈A, we
write: Actor (a). An actor ai is either a service requestor or a
service provider.
Definition 2. G= {g1, …, gn}is a set of Goal-states. If g∈G,
we write Goal (g). A goal-state gi is a condition or state of
affairs in the world that a service requestor would like to
achieve. A goal can be achieved in different ways, prompting
alternatives to be considered.
Definition 3. T = {t1,…, tn} is a set of tasks. If t∈T, we write
Task (t). A task ti is used to represent the specific procedures
to be performed by service provider, which specify particular
ways of doing something. Tasks are used to incrementally
specify and refine solutions in the target system. Task is the
way for achieving goals.
Definition 4. R = {r1,…, rn} is a set of Service Resources(r).
Resource is a physical or informational entity, which may
serve some purpose. Properties of an entity include whether
it is available or not, what is the value its quality attributes,
or non-intentional properties such as amount, producer,
copyright owner, color, length, etc.
Definition 5. Q = {q1,…, qn} is a set of quality attributes. If
q∈Q, we can also write Quality (q). A quality attribute could
be any attribute that is concerned by an actor requesting or
providing a service, such as, cost of a service, performance,
security/privacy assurance, easy-to-use, etc. In other words,
anything within the scope of QoS can be described.
Definition 6. S=G∪ T∪ R∪ Q is a set of Services. Textually,
if s ∈ S, we can also represent it as: Service (s).
Definition 7. DC ⊆ (G × G) ∪ (T×T) ∪ (R×R) is a set of
decomposition relationships. If dc(g1, g2) ∈ DC, we write
part-of (g1, g2), which is used to describe that g2 can be
achieved iff g1 can be done.

Definition 8. The relations between goals are represented by
class Goal Construct. Goal Construct is used to describe the
temporal or causal relation of Goals. So far, there are three
structures: Sequence: the goals connected by it must be
executed one by one according to the order they appear in the
goal sequence. Unordered: the Goals connected by it can be
executed in any order or concurrently; Selection: only one
goal among all alternatives can be executed.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

Definition 9. C ⊆A×{S ∪ SG} is a set of capable relations.
We use Can a s to denote that there exists an actor a can
provide certain service or quality s, i.e., c(a, s) ∈ C.
Definition 10. ME⊆T × G, is a set of means-ends
relationships. If me(t, g)∈ ME, we write Means-ends (t, g). A
means-ends relationship me (t, g) is used to describe that g
can be achieved if the task t is performed. Each task
connected to a goal by a means-ends link is one possible way
of achieving the goal.
Definition 11. Contribution relationship: CN = (SG × (SG ∪
S)) → CT is a set of Contribution relationships. CT =
{positive, negative, unknown} × {full, partial, unknown degree} is
a set of contribution types. We use following alias for each
possible value of the contribution type: Make = (full, positive);
Help = (partial, positive); Some+ = (positive, unknown degree);
Undecided = (unknown, unknown degree); Some- = (negative,
unknown degree); Hurt = (partial, negative); Break = (full,
negative). The partial order of the above types is: Make ≥ Help
≥ Some + ≥ Undecided ≥ Some - ≥ Hurt ≥ Break. Other
qualitative or quantitative measurements can be used as scale
of contributions.

The SRMO has inherited its key modelling
concepts from i*, a widely adopted requirement
modeling framework. Thus, SRMO can be considered
as a service-flavored requirements modeling
framework. i* framework emphasize the actors or
stakeholders distributed in different environments and
the relationships among them, and is generally
applicable to any distributed agent-oriented
environments.
 In other words, the requirement model defined here
is generally applicable which means it can be applied
to requirements settings other than the service-oriented
paradigm. The SRMO ontology is also extensible to
incorporate concepts representing other specific
requirements modelling perspectives.
3. Service Requirements Elicitation Process

Getting the requirements right is a must in the
development of complex, software-intensive systems.
In conventional requirements engineering, we often use
questionnaires, meetings, interviews to collect original
requirements data. Such original requirements
information are often fragmented like jigsaw puzzles,
requirements analysts’ major contribution is to recover
the complete picture from such fragments, and making
design decisions based on the information available.
Service Engineering faces a similar situation. When
consumer issues a service request, it expresses some
intended need to be served. Our requirements
elicitation mechanism is dedicated to make such
service requirements explicit, and to apply it to
conduct automated service discovery and composition.

The Service Requirements Elicitation Process
(SREP) helps generate a requirements model based on
the concepts shown in the ontology above. Thus, it is
inevitable for us to raise questions such as: How to

extract the original requirements statements from a
service requestor? Here, we present a series of
questions and answer schemas to formulate the rough
sketch of requirements model.
Q1: What is the service being required? The answer to
this question could be a goal (), which state a
condition to be satisfied with the help of the service; or
a task (), which specify a procedure or course of
actions to be performed during the service execution;
or a resource (), which is made available by
the service; or a quality (), which is to be
ensured by the required service.
Question 2: How can the state of the Goal be
achieved? In what way can we fulfill requirements of
the Goal? Answer to this question will identify a Task
that defines a specific way for achieving the Goal. It
adds a means-ends link between Goal and task, task is
a means for achieving Goal, while Goal being the end
of performing the task. We may have various tasks for
one Goal; each task stands for one alternative ways of
achieving this Goal. The answer to this question is

modeled as .
Question 3: What are the sub-components of this
required goal/task/resource? What sub-goals are need
to achieve for this Goal? Decomposition of goal is
similar to business process modeling to some extent,
but focuses on the requirements and desires from
requestor. This step need to be done iteratively for each
goal until all goals are refined into a structure which
requestor considers as satisfactory. The decomposition
process can also be applied to task and resource, such
as, what sub-tasks need to be executed for the task?
How can the resources be assembled? The answer to
this question is modeled with structures as follows:

.
Question 4: Among the sub-goals/tasks identified, are
there any ordering constraints? What is the temporal or
causal relationship between these sub-goals/tasks? The
relationship includes 3 kinds: sequence, selection and
unordered. The relationships are modeled as:

, ,

.
Question 5: What sub-task should be done to execute
a specific task? What resource does this task need and
associate with? The resource is often an entity, which
can be a service also. The answer is modeled as:

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

Question 6: What quality attribute associated with
goal/resource is required? Quality attributes of a
service are those judge rules for evaluating its quality.
The answer to this question is modeled as:

.
Question 7: How does a specific task influence quality
of service? Task has its contribution to attributes link
specified in question 5. Task directly influences the
Quality attribute of a goal. The answer to this question
is graphically modeled as:

Question 8: How does one quality attribute influence
another quality attribute? The answer to this question is
graphical modeled as:

Questions 1 to 8 help us collect requirement

fragments from requestors. Figure 2 shows an
integrated view example for a service requirement,
which if all question answered, can be constructed by
those answers.

Potential inconsistencies between different
requirement fragments are inevitable. For example,
some consider that sequence is the feasible relationship
between several goals while others prefer the selection
relation. We solve this problem with a statistical
approach. In the process of elicitation, all users’ inputs
will be maintained. We calculate the score of answers
comprising each solution, and use the solution with
highest overall score. This is a simple and
straightforward approach, which is easily operable and
effective. More comprehensive measure is to build
several types of user profiles, and give different weight
to different requirements parameters to reflect users’
preferences and biases.

Figure 2. a hierarchical requirement model in SRMO

4. Service Requirements Reconciliation
Process and Heuristics

Service requirements elicitation can help each
requestor understand their requirements better and
express their service desires more efficiently in future.
As afore mentioned, for different requestors targeting
at the same service goal, SREM can build up different
requirements models using SREP. SREP was meant to
bring benefits to not only service requestors, but also
service providers. Through the integration of users’
requirements models from different service requestors,
this mechanism builds a requirements knowledge
repository. Such a repository offers service providers
requirements knowledge about the needs and
preference of service requestors with regard to the
service offered by him. In the meanwhile, the one who
owns the most important components in the repository
would find itself in an advanced position when
competing with other service providers. Having
received the corresponding position in the
requirements model hierarchy, service providers could
trace upstream the network to figure out what other
influential requirements it can set hand in. This section
discusses this requirements reconciliation process.

4.1 Matching Strategy

The key step in the SRRP, is to combine new
incoming requirements model into the existing
repository. When integrating a new requirements
model into the knowledge base, SRRP first need to
analyze all components in the new model to see if it
has any similarity with any existing components of the
concept diagram. First, we define the matching
strategy. To understand better, the components are
prioritized in a stack in figure 3.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

Figure 3. Matching priority
Quality Attribute Synergy rule: There are
overlapping quality attributes for different services.
Quality attributes can be domain-specific or domain-
independent. Domain-specific attributes vary from one
service requirements Goal to another. When matching
quality attributes, we combine ranges of the domain
independent attributes across services, and combine the
ranges of domain-specific attributes only if their
service Goals also match.
Resource combination strategy: Resource represents
a physical or informational entity, which is the object
of certain task for the achievement of the
corresponding service goal.
Task combination strategy: Task is the specific
procedures to be performed by service provider for
achieving a goal. Two tasks are same if only they have
the same capability and constraint; they operate on the
same type of resource and provide the same function.
Two same tasks may have different description, sub-
structure and super-structure.
Quality contribution propagation strategy: Each
task has its contribution link to quality attribute of goal.
Only if the same tasks under the same goal have the
same contribution link.
Goal grouping strategy: Goal matching often occurs
at different structure levels. A top level goal for a new
incoming service requirement may be the same with a
sub-goal in another goal sub-structure. The matching
rule for goals is based on the task connected to it by
means-ends link. Two goals can be combined when
they have matching means-ends task and matching
quality attributes.

Other matching rules include:
R1: If two goals/tasks/resources/attributes have the same
name, they can be matched. We can use edit distance and
work Net to compare two name string.
R2: If two goals/tasks/resources/attributes have the same
identifier such as URI, they can be matched.
R3: If goals/tasks/resources have the same direct sub-
structure, they can be matched
R4: If two goals/tasks/resources have the same parent and
siblings, they can be matched potentially.
R5: For all elements, if A matches with B, B matches with C,
and then A matches with C.
R6: if two goals have the same means-ends tasks, they can
be matched.
R7: If two tasks are the same, they have the same quality
contribution link to quality attributes.
 These rules will help us merging new service request
model into existing one. This part analyzes the
potential matching between requirement models. It is
the foundation for requirements reconciliation process
to be discussed next.

4.2 Merging requirements instances
SRRP aims to conduct a learning process based on a

large number of requirements model instances to form
a requirements knowledge structure. A possible
scenario could be: SREP accepts a first request into an
empty requirement model. When another request
comes, SRRP reconciles the new one with the original
model, construct a hierarchy structure. The learning
procedure continues when new request comes.

We describe the process of requirements
reconciliation in SRRP as follows:
1. Conduct concept learning, compare the elements in the
new incoming model with existing ones, merge the models
by identifying various goal, task, resource, or attributes.
2. Counting the frequency each element and its sub-structure
link appeared in the requirements model when performing
the merge operation.
3. The reinforcement of an element refers to how often it
appears in the model network.
4. Redundant decomposition links are removed and the
corresponding transitive links are reinforced.
5. Equivalence heuristics are applied for merging matching
elements. Apply all matching rules mentioned above.

This requirements reconciliation process help
generate an integrated requirements model. The more
requests issued, the more refined the requirements are,
and the richer is the knowledge.

4.3 Requirements Elicitation from statistics

When the number of service requests grows, the
integrated model becomes more refined. Based on the
integrated model and the reinforcement of each
goal/task/resource, both service requestor and provider
can benefit from the information. Typical scenarios
are:
①Elicitation results from requestor’s perspective:

The integrated requirements hierarchy provides
more possible alternative implementations for a service
goal, for one goal/task, it can have many different
ways of decomposition; standing for different
viewpoint for this goal/task. Instead of simply
integrating all viewpoints from different requestors;
integrated network has an important statistic variable,
reinforcement, which consensus on how most people
view the goal/task. For a service goal, we can find a
relevance model which chooses the sub-component
link with the largest reinforcement at every
decomposition node. This model would reflect most
requests’ position on this goal.
② Elicitation results from provider’s perspective:

Service providers will identify the goal/tasks with
higher reinforcement as major revenue producers, and
are the focus of requestors.

An important issue the requirements process can
help service provider answer is how to map its core

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

competence into a maximum set of users’ requirements
that can be satisfied by it. The result of the above
learning process offers us a solution. Given a network,
each task in the network requests a provider to execute,
thus, provider first locates its core service capability on
a task for one goal, then it trace upstream the network
to find other requirements goal it can take part in. For
instance, a provider for currency transformation service
goal may find itself a role in a hospital financial
service process, which is unknown before. Using this
knowledge, provider may map its capability to any
domain, find more potential business leads.

5. Example Case Study

We have applied the proposed approach on a simple
web process of order-processing. When an order
request is issued by a customer, the manufacturer, upon
receiving the order detail, checks the inventory to
verify if it has enough quantity of goods to fill up the
order. In case there is enough stock then the
manufacturer contacts its delivery partner to confirm
shipping date and address. Based on the shipment fee
returned by delivery partner and the products cost from
order detail, the accounting partner, often a bank,
calculate the total price and return the results to
customer. When there is not enough stock in the
inventory, the manufacture contacts its supplier first
and then the delivery partners.

For each component service in the process, SREP
can build a requirements model. Take Account Service
as an example, its service goal is “total cost for the
new order is explicitly calculated”. The following
figure 4, 5 presents the model built by SREP. They are
constructed by different requirement fragments.
Different figures reveal viewpoints from different
prospective providers. For limitation of space, we use
labels for model elements: (G for goal, T for task, R
for resource and QA for quality attribute.)

G: total cost for the new order is explicitly calculated;
G1: Cost for supply service in business process is computed;
G2: Cost for delivery service in business process is computed;
G3: discount for consumer is computed;
G4: the tax for this order is computed;
G5: The finance of enterprise is balanced.
T1: Compute the fee for Supply Service;
T2: Compute the fee for delivery Service;
T3: check the discount for customer.
T4: Compute the tax cost for all cost;
T5: Bank help balancing the finance of the enterprise; T6: Basic
computation capability;
T7: Check the reputation of the corresponding customer;
T8: Check the discount for the customer within the reputation
level;
R1: supply service; R2: delivery service;
R3: customer information record;
R4: tax radio table; R5: money;
QA1: Accuracy; QA2: Security; QA3: Good reputation;

Figure 4. Model of request 1 for Account Service

Figure 5. Model of request 2 for Account Service
The integrated model from the two requests for

account service is shown in Figure 6, the reinforcement
of each goal/task/quality is labeled on the upper right
side of it:

Figure 6. Merged model for Account Service

 After building a model, when new request comes in,
the process of SRRP merge it into the integrated model.
As we always emphasize, requirements gathered from
requestor are mostly fragments, suppose request 3 is as
below which is only fragment:

Figure 7. Model of request 3 for Account Service
According to the step 4 in SRRP, merging this

request will not changed the model, but increases the
reinforcement of the corresponding goals. Through
SRRP process to merge requirement fragments into the
model, SREM makes the requirement more and more
refined and detailed.

Among the huge amount information provided by
the model, the reinforcement number of elements
presents us a relevant path to understand the
requirement. For instance, if more requests issued like
request 3, account service would be considered as
shown in figure 8:

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

Figure 8. Reinforcement path for Account Service
An important application of this model is its can

help relate requirements items, from which requestors
can obtain necessary information they expect. The
learning process can continue by referring to other
requestor’s model. And the optimal path indicated by
reinforcement is a guideline for ordinary requestors.

On the other hand, provider expects to map its core
competence into a maximum set of users requirements.
Now we discuss another scenario, in which
requirement fragments come from requests for other
services. Figure 9 show the model for delivery service:

G’: Goods provided by supply service delivered safely to target;
G8: Cost for delivery service is confirmed;
G9: The goods is received from supplier;
G10: The goods is delivered at target;
G11: The finance of delivery company gets balanced;
T9: Delivery company discuss cost;
T10: Delivery people pick up the goods;
T11: Delivery people transfer the goods to target.
T12: Financial institute does the balance for the company;

Figure 9. Model of a request for Delivery Service
 After SRRP process this request, the integrated

model becomes: G5, G11 are the same; it has two
implementations, T5 and T12. Thus, the providers for
T5 or T12 would be useful in both G and G’.
Concretely, both bank and financial institute can
perform the task for Account Service and Delivery
Service. Thus, providers capable of a task would find
their other capabilities related to the task. The more
request integrated into this model, the providers would
found more users’ requirements its core capability can
help performing. The model structure provides
information for all service providers, to organize their
legacy system to a more reasonable and comprehensive
set of services.

Figure 10. Integrated Model with delivery service

6. Related Work

Requirements elicitation for software systems has
been focused primarily on the development,
implementation, and evaluation of a variety of
techniques, methods, and tools. Many of these were
adopted from other disciplines such as the social
sciences [2, 4] and knowledge engineering [9, 11].
Regardless of their origin, the objectives for these
approaches were to reduce the complexity of the
elicitation process and improve the quality of the
requirements. In reality, there are about a hundred
approaches that can be used for requirements
elicitation. [7] has examined at a relatively high level a
small number of the traditional techniques such as
interviewing, observation, and task analysis. In a more
recent survey on the theory and practice of
requirements elicitation [6], more approaches were
examined including those based on goals [5], scenarios
[13], viewpoints [15], and domain knowledge [16].

We consider our approach a natural migration of the
goal-oriented requirements elicitation approach into
services-oriented computing. That is, in the service-
oriented requirements engineering, the elicitation
process has to be conducted within the service life-
cycle, and with web-based elicitation tools. Instead of
targeting at one particular service user, it is targeting at
user clusters with similar needs and preferences. Thus,
our major contribution is three folds: first, we
identified a group of service requests fragments; then
we have given heuristics on how to assemble such
service request fragments from a same requestor into a
comprehensive goal-structure representing service
requirement. Finally, we propose a mechanism for
reconcile service requirements knowledge on a same
service from different requestors.

Thus, we consider work on consensus ontologies
[8,12,14] relevant to this paper. Consensus ontologies
assume that a multiplicity of ontology fragments,
representing the semantics of different sources can be
related to each other automatically without the use of
an existing global ontology. As the readers will see,
this paper take a moderated position by having the
goal-oriented world view as the background, and
assume that user’s request are ontologies to consensus
within this macro scope.

There are also other slightly related works such as
[3] which targets at similar problems on collecting
users’ preferences in order to guide service
composition. It suggests user to present a service
request with an external e-Service schema of a finite
state machine. We consider such work as targeting as
similar problem using different conceptual mindsets

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

and treatments. There was a homonymous requirement
methodology SREM[1] in 1970s, designed for large
embedded systems providing descriptions of real world
objects, data requirements and message processing.

7. Conclusion

In summary, we present a mechanism to facilitate
service requirements elicitation based on service
requestors’ answers to a group of queries designed
based on a goal-oriented requirements language – i*,
called SREM. The SREM mechanism consists of three
major components SRMO, SREP and SRRP. We have
elaborated on each of these components and the
requirements reconciliation heuristics to establish
requirements hierarchical model based on it. The
proposed elicitation mechanism will benefit all
involved actors in the service world. Requestor can
encode its request more efficiently, and provider can
dig out the potential business leads through tracing
over the requirements model. Our major contribution is
three fold: first, we identified a group of service
requests fragments; then we have given heuristics on
how to assemble such service request fragments from a
same requestor into comprehensive goal-structure
representing service requirements. Finally, we propose
a mechanism for reconcile service requirements
knowledge on a same service from different requestors.

In the future, we will continue with the line of
research in the following directions: first, to bind the
proposed service requirements elicitation mechanism
with a widely applied service computing platform, so
that validity, advantage and limitations of the approach
can be stressed. Second, we will extend the goal-
oriented requirements ontology with other existing
requirements frameworks such as scenarios-based,
state-machines-based, object-oriented approaches, so
that we can ladder user preferences, constraints, and
requirements from any starting points.

Acknowledgement
Financial support from NSF China (no.60503030),
National High Tech. 863 Program
(no.2006AA01Z155), National Basic Research and
Development 973 Program (no.2002CB312004), and
Basic Research Foundation of Tsinghua National
Laboratory for Information Science and Technology
(TNList) is gratefully acknowledged.

References
[1] Alford M.W., Software Requirements Engineering
Methodology (SREM) at the Age of Two, COMPSAC78.
Proceedings: 332-339, 1978.
[2] Ball L.J., Ormerod T.C., Putting ethnography to work: the
case for a cognitive ethnography of design. International
Journal of Human–Computer Studies 53(1), 147-168, 2000
[3] Berardi D., Calvanese D., De Giacomo G. etc, Automatic
composition of e-services that export their behavior, Proc. Of
1st ICSOC, 2003, pp. 43-58.
[4] Beyer H.R., Holtzblatt K., Apprenticing with the
customer. Communications of the ACM, 38(5): 45-52, 1995.
[5] Dardeene A., van Lamsweerde A., Fickas S., Goal-
Directed Requirements Acquisition. Science of Computer
Programming 20(1-2): 3-50, 1993.
[6] Zowghi D., Coulin C., Requirements Elicitation: A
Survey of Techniques, Approaches, and Tools. In
Engineering and Managing Software Requirements,
Springer: US, 2005.
[7] Goguen J.A., Linde C., Techniques for Requirements
Elicitation. International Symposium on Requirements
Engineering, 152-164, January 4-6, San Diego, CA, 1993.
[8] Hindriksv K. V., de Boer F. S., der Hoek V., etc, Agent
Programming in 3APL, AAMAS, 1999, pp. 357-401.
[9] Hudlicka E., Requirements Elicitation with Indirect
Knowledge Elicitation Techniques: Comparison of Three
Methods. ICRE’96, 4-11, Colorado Springs, USA. 1996.
[10] Liu L., Chi C., Jin Z., Yu E., Strategic Capability
Modelling of Services. The 2nd Workshop of Service-
Oriented Computing Consequences and Experience of
Requirements(SOCCER 2006). Paris, France.
[11] Maiden N.A.M., Rugg G., Knowledge Acquisition
Techniques for Requirements Engineering. Requirements
Elicitation for Systems Specification, July,Keele, UK, 1994.
[12] Munindar P. Singh, Michael N. Huhns. Service-Oriented
Computing: Semantics, Processes, Agents. Wiley, London,
UK, 2005
[13] Potts C., Takahashi K., Anton A., Inquiry-Based
Requirements Analysis. IEEE Software 11(2): 21-32, 1994.
[14] Rao A. S., AgentSpeak(L): BDI Agent Speak Out in a
Logical Computable Language, Proceeding. of the 7th
EuropeanWorkshop on Modeling Autonomous Agents in a
Multi-Agent World, 1996, pp. 42-45.
[15] Sommerville I., Sawyer P., Viller S., Viewpoints for
Requirements Elicitation: A Practical Approach.
International Conference on Requirements Engineering, 74-
81, April 6-10, Colorado Springs, USA, 1998.
[16] Sutcliffe A, Maiden N., The Domain Theory for
Requirements Engineering. IEEE Transactions on Software
Engineering 24(3): 174-196, 1998.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

