
ar
X

iv
:2

10
6.

01
85

0v
1 

 [
cs

.C
R

] 
 3

 J
un

 2
02

1

Relational Analysis of Sensor Attacks on

Cyber-Physical Systems

Jian Xiang∗, Nathan Fulton†, Stephen Chong∗

∗SEAS, Harvard University {jxiang, chong}@seas.harvard.edu
†MIT-IBM Watson AI Lab. nathan@ibm.com

Abstract—Cyber-physical systems, such as self-driving cars or
autonomous aircraft, must defend against attacks that target
sensor hardware. Analyzing system design can help engineers
understand how a compromised sensor could impact the system’s
behavior; however, designing security analyses for cyber-physical
systems is difficult due to their combination of discrete dynamics,
continuous dynamics, and nondeterminism.

This paper contributes a framework for modeling and analyzing
sensor attacks on cyber-physical systems, using the formalism
of hybrid programs. We formalize and analyze two relational
properties of a system’s robustness. These relational properties
respectively express (1) whether a system’s safety property can
be influenced by sensor attacks, and (2) whether a system’s high-
integrity state can be affected by sensor attacks. We characterize
these relational properties by defining an equivalence relation
between a system under attack and the original unattacked
system. That is, the system satisfies the robustness properties
if executions of the attacked system are appropriately related to
executions of the unattacked system.

We present two techniques for reasoning about the equivalence
relation and thus proving the relational properties for a system.
One proof technique decomposes large proof obligations to
smaller proof obligations. The other proof technique adapts
the self-composition technique from the literature on secure
information-flow, allowing us to reduce reasoning about the
equivalence of two systems to reasoning about properties of
a single system. This technique allows us to reuse existing
tools for reasoning about properties of hybrid programs, but
is challenging due to the combination of discrete dynamics,
continuous dynamics, and nondeterminism.

To validate the usefulness of our relational properties and proof
techniques, we present three case studies motivated by real design
flaws in existing cyber-physical systems.

I. INTRODUCTION

Cyber-physical systems, which consist of both physical and

cyber components, are often safety and security critical [1]–

[4]. Designing secure cyber-physical systems is difficult be-

cause adversaries benefit from a broad attack surface that

includes both software controllers and physical components.

Sensor attacks often allow an adversary to directly control

the system under attack. For example, Cao et al. demon-

strate how to manipulate an autonomous vehicle’s distance

measurements by shining a laser into its Light Detection and

This is an extended version of the paper with the same title that appeared in
the 2021 Computer Security Foundations Symposium. This version includes
a proof of Theorem 3 in Appendix D.

Ranging (LiDAR) sensors [5], Humphreys et al. demonstrate

how spoofing Global Positioning System (GPS) signals may

allow an attacker to force a yacht autopilot to deviate from

a designated course [6], and Davidson et al. demonstrate a

GPS-based hijacking attack on unmanned aircraft [7]. The

breadth of the cyber-physical attack surface affords adversaries

a range of attack modalities even when hijacking control is

not possible. For example, Son et al. demonstrate how to

crash a quadcopter using a magnetic attack on a quadcopter’s

gyroscopic sensors [8].

Testing-based approaches are insufficient to guarantee the

safety of a cyber-physical system, even when the system is

not under attack. In a 2016 study on autonomous vehicles,

Kalra et al. conclude that a self-driving fleet would need to

drive hundreds of millions or sometimes hundreds of billions

of miles to provide a purely testing-based reliability case [9].

Driving these miles in a representative set of road conditions

would take tens or hundreds of years depending on the size

of the test fleet. The intractability of testing-based approaches

is also confirmed by incompleteness results [10]. Establishing

security is even more difficult than establishing safety.

The importance and difficulty of ensuring the safety of cyber-

physical systems motivate a growing body of work on for-

mal verification for embedded and hybrid systems [11]–[15].

However, relatively little work considers formal verification of

such systems in the presence of sensor attacks. Some recent

work emphasize timing aspects of sensor-related attacks [16],

[17]; however, the work model the system’s dynamics as a

deterministic discrete time dynamical system, whereas most

cyber-physical systems are best modeled with a nondetermin-

istic combination of discrete and continuous dynamics.

It is important for cyber-physical system designers to under-

stand whether a compromised sensor can result in undesired

behavior, such as violating a safety property or corrupting a

critical state. For example, the designer of an adaptive cruise

control system might want to verify that the car’s minimum

following distance is not affected by a compromised GPS

sensor.

Understanding the impact of compromised sensors requires

us to reason about relational properties [18], that is, the

relationship between executions of the original uncompro-

mised system and executions of the system where some of

the sensors have been compromised. Relational properties are
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often harder to reason about than functional properties, as they

require reasoning simultaneously about multiple executions.

And there is less tool support for formal verification of

relational properties, compared to functional properties.

In this work, we define and explore two relational properties

that characterize the robustness of cyber-physical systems

under sensor attacks. Our threat model assumes a powerful

attacker that may compromise a subset of sensors and arbi-

trarily manipulate those sensors’ values. We do not model or

discover the mechanisms by which an attacker manipulates

sensor values; we simply assume they are able to do so.

Our first relational property is robustness of safety, which

intuitively holds when the compromised sensors are unable

to affect whether a given safety property holds in the attacked

system. Note that this is not the same as requiring that the

attacked system satisfies the safety property. Indeed it may be

beyond current verification techniques to determine whether

the safety property holds in the uncompromised system, let

alone the compromised system. Nonetheless, even in such

cases it can be possible to verify that compromised sensors do

not affect the safety property. Robustness of safety implies that

if the uncompromised system satisfies the safety property then

the compromised system will too. Reasoning about robustness

of safety separates reasoning about the implications of sensor

attacks from reasoning directly about functional properties.

Our second relational property is robustness of high-integrity

state, which requires that high-integrity parts of a system

cannot be influenced by the attacker. For example, returning

to our autonomous vehicle example, parts of the system

pertaining to steering and braking should be regarded as high

integrity and independent from low-integrity sensors such as

the interior thermometer. Robustness of high-integrity state is

similar to noninterference [19], [20], which requires that low-

integrity inputs can not influence high-integrity outputs.

We work within the formalism of hybrid programs [10],

[21], [22] and their implementation in the theorem prover

KeYmaera X [23]. Hybrid programs model cyber-physical

systems as hybrid-time dynamical systems, with the discrete

time component of the system modeling software components

and the continuous time component of the system modeling

physical phenomenon.

To define our two relational properties, we introduce the

H-equivalence relation over hybrid programs, where H is a set

of variables. Intuitively, two hybrid programs are H-equivalent

if they agree on the values of all variables in H at appropriate

times. In particular, we define our two relational properties as

H-equivalence between the original system and the compro-

mised system (for suitable sets of variables H).

We introduce two sound and tractable techniques to reason

about H-equivalence (and thus to prove that robustness of

safety and robustness of high-integrity state hold). The first

technique decomposes reasoning about H-equivalence of two

large programs to reasoning about H-equivalence of their

subprograms. The second technique reduces reasoning about

H-equivalence of two programs A and B to reasoning about

safety properties of a single program that represents both A

and B. This reduction allows us to prove relational properties

using KeYmaera X, an existing theorem prover for hybrid pro-

grams that does not directly support relational reasoning. This

technique is inspired by the self-composition technique [24]

used to prove noninterference in imperative and deterministic

programs. A key challenge we faced in adapting the self-

composition technique for hybrid programs is reasoning about

nondeterminism and physical dynamics, and in particular,

ensuring that certain nondeterministic choices are resolved the

same in both executions.

The main contributions of this paper are the following:

1. We introduce a threat model of sensor attacks in the

context of hybrid programs that model cyber-physical

systems. We show that these sensor attacks can be for-

malized in terms of syntactic manipulations of hybrid

programs. We introduce robustness of safety and robust-

ness of high-integrity state, two relational properties that

express security guarantees in the presence of sensor

attacks. (Section III)

2. We introduce H-equivalence, an equivalence relation over

hybrid programs, and express our relational properties in

terms of H-equivalence. (Section IV)

3. We present two techniques for reasoning about

H-equivalence and prove their soundness. (Section V)

4. We validate the approach developed throughout the paper

through three case studies of non-trivial cyber-physical

systems: an anti-lock braking system, the Maneuvering

Characteristics Augmentation System (MCAS) of the

Boeing 737-MAX, and an autonomous vehicle with a

shared communication bus. (Section VI)

We introduce some background about hybrid programs in

Section II. Section VII discusses related work.

This is an extended version of the paper with the same title

that appeared in the 2021 Computer Security Foundations

Symposium. The main addition of this paper is the proof of

Theorem 3 in Appendix D.

II. BACKGROUND

Hybrid programs [22] are a formalism for modeling cyber-

physical systems, i.e., systems that have both continuous and

discrete dynamic behaviors. Hybrid programs can express

continuous evolution (as differential equations) as well as

discrete transitions.

Figure 1 gives the syntax for hybrid programs. Variables are

real-valued and can be deterministically assigned (x := θ,

where θ is a real-valued arithmetic term) or nondeterministi-

cally assigned (x := ∗). Hybrid program x′ = θ&φ expresses

the continuous evolution of variables: given the current value

of variable x, the system follows the differential equation



Real-valued terms θ

x Real-valued program variable

c Constant

θ1 ⊕ θ2 Computation on terms ⊕ ∈ {+,×}
Hybrid Program α, β, P

x := θ Deterministic assignment of real arithmetic term
θ to variable x

x := ∗ Nondeterministic assignment to variable x

x′ = θ&φ Continuous evolution along the differential equa-
tion system x′ = θ for an arbitrary real duration
within the region described by formula φ

?φ Test if formula φ is true at the current state

α; β Sequential composition of α and β

α ∪ β Nondeterministic choice between α and β

α∗ Nondeterministic repetition, repeating α zero or
more times

Differential Dynamic Logic φ, ψ

θ1 ∼ θ2 Comparison between real arithmetic terms (∼∈
{<,≤,=, >,≥})

¬φ Negation

φ ∧ ψ Conjunction

φ ∨ ψ Disjunction

φ→ ψ Implication

∀x. φ Universal quantification

∃x. φ Existential quantification

[α]φ Program necessity (true if φ is true after each
possible execution of hybrid program α)

Fig. 1: Syntax of hybrid programs and dL

x′ = θ for some (nondeterministically chosen) amount of time

so long as the formula φ, the evolution domain constraint,

holds for all of that time. Note that x can be a vector of

variables and then θ is a vector of terms of the same dimension.

Hybrid programs also include the operations of Kleene alge-

bra with tests [25]: sequential composition, nondeterministic

choice, nondeterministic repetition, and testing whether a

formula holds. Hybrid programs are models of systems and

typically over-approximate the possible behaviors of a system.

Differential dynamic logic (dL) [21], [22], [26] is the dynamic

logic [27] of hybrid programs. Figure 1 also gives the syntax

for dL formulas. In addition to the standard logical connectives

of first-order logic, dL includes primitive propositions that

allow comparisons of real-valued terms (which may include

derivatives) and program necessity [α]φ, which holds in a state

if and only if after any possible execution of hybrid program

α, formula φ holds.

The semantics of dL [21], [26] is a Kripke semantics in which

the Kripke model’s worlds are the states of the system. Let

R denote the set of real numbers and V denote the set of

variables. A state is a map ω : V 7→ R assigning a real value

ω(x) to each variable x ∈ V. The set of all states is denoted

by STA. The semantics of hybrid programs and dL are shown

in Figure 2. We write ω |= φ if formula φ is true at state

ω. The real value of term θ at state ω is denoted ωJθK. The

semantics of a hybrid program P is expressed as a transition

relation JP K between states. If (ω, ν) ∈ JP K then there is an

Term semantics

ωJxK = ω(x)
ωJcK = c

ωJθ1 ⊕ θ2K = ωJθ1K ⊕ ωJθ2K for ⊕ ∈ {+,×}
Program semantics

Jx := θK = {(ω, ν) | ν(x) = ωJθK and for all other

variables z 6= x, ν(z) = ω(z)}
Jx := ∗K = {(ω, ν) | ν(z) = ω(z) for all variables z 6= x}

J?φK = {(ω, ω) | ω |= φ}
Jx′ = θ &φK = {(ω, ν) | iff exists solution ϕ : [0, r] 7→ STA of

x′ = θ with ϕ(0) = ω and

ϕ(r) = ν, and ϕ(t) |= φ for all t ∈ [0, r]}
Jα ∪ βK = JαK ∪ JβK

Jα;βK = {(ω, ν) | ∃µ, (ω, µ) ∈ JαK and (µ, ν) ∈ JβK}
Jα∗K = JαK∗ the transitive, reflexive closure of JαK

Formula semantics

ω |= θ1 ∼ θ2 iff ωJθ1K ∼ ωJθ2K for ∼∈ {=,≤, <,≥, >}
ω |= φ ∧ ψ iff ω |= φ ∧ ω |= ψ, similar for {¬,∨,→,↔}
ω |= ∀x.φ iff ν |= φ for all states ν that agree with ω

except for the value of x

ω |= ∃x.φ iff ν |= φ for some state ν that agrees with ω

except for the value of x

ω |= [α]φ iff ν |= φ for all state ν with (ω, ν) ∈ JαK

Fig. 2: Semantics of hybrid programs and dL

execution of P that starts in state ω and ends in state ν.

We are often interested in partial correctness formulas of the

form φ → [α]ψ: if φ is true then ψ holds after any possible

execution of α. The hybrid program α often has the form

(ctrl;plant)
∗, where ctrl models atomic actions of the

control system and does not contain continous parts (i.e.,

differential equations); and plant models evolution of the

physical environment and has the form of x′ = θ &φ. That is,

the system is modeled as unbounded repetitions of a controller

action followed by an update to the physical environment.

Consider, as an example, an autonomous vehicle that needs

to stop before hitting an obstacle. For simplicity, we model

the vehicle in just one dimension. Figure 3 shows a HP
model (hybrid program model) of such an autonomous vehicle.

Let d be the vehicle’s distance from the obstacle. The safety

condition that we would like to enforce (φpost) is that d is

positive. Let v be the vehicle’s velocity towards the obstacle in

meters per second (m/s) and let a be the vehicle’s acceleration

(m/s2). Let t be the time elapsed since the controller was

last invoked. The hybrid program plant describes how the

physical environment evolves over time interval ǫ: distance

changes according to −v (i.e., d′ = −v), velocity changes

according to the acceleration (i.e., v′ = a), and time passes at

a constant rate (i.e., t′ = 1). The differential equations evolve

only within the time interval t ≤ ǫ and if v is non-negative

(i.e., v ≥ 0).

The hybrid program ctrl models the vehicle’s controller.

Platzer introduces this autonomous vehicle example [22].

Syntax of hybrid programs used in this paper is similar to the syntax used
in KeYmaera X, but revised for better presentation.



1 Definitions. /* cannot change over time */

2 R ǫ. /* time limit for control */

3 R A. /* acceleration rate */

4 R B. /* braking rate */

5 B φpre ≡ A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2

6 B φpost ≡ d > 0

7 B ψ ≡ 2Bd > v2 + (A+B)(Aǫ2 + 2vǫ)

8 HP accel ≡ ?ψ; a := A

9 HP brake ≡ a := −B

10 HP ctrl ≡ ((accel ∪ brake); t := 0)

11 HP plant ≡ d′ = −v, v′ = a, t′ = 1 & (v ≥ 0 ∧ t ≤ ǫ)

12 ProgramVariables. /* may change over time */

13 R t. /* clock variable */

14 R d. /* distance to obstacle */

15 R v. /* vehicle velocity */

16 R a. /* acceleration of the vehicle */

17 Problem. /* dL formula to be proven */

18 φpre → [(ctrl; plant)
∗
]φpost

Fig. 3: HP model of an autonomous vehicle

The vehicle can either accelerate at A m/s2 or brake at −B

m/s2. For the purposes of the model, the controller chooses

nondeterministically between these options. Hybrid programs

accel and brake express the controller accelerating or brak-

ing (i.e., setting a to A or −B respectively). The controller

can accelerate only if condition ψ is true, which captures that

the vehicle can accelerate for the next ǫ seconds only if doing

so would still allow it to brake in time to avoid the obstacle.

The formula to be verified is presented on the last line of

the HP model. Given an appropriate precondition φpre , the

axioms and proof rules dL can be used to prove that the

safety condition φpost holds. The tactic-based theorem prover

KeYmaera X [23] provides tool support for automating the

construction of these proofs.

To present some of our definitions, we need to refer to the

variables that occur in a hybrid program [22], [26]. The

free variables of hybrid program P , denoted FV(P ), is the

variables that may potentially be read by P . Values of FV(P )
won’t be modified during executions of program P . The bound

variables of program P , denoted BV(P ), is the set of variables

that may potentially be written to by P . We write VAR(P ) for

the set of all variables of P , and have VAR(P ) = BV(P ) ∪
FV(P ). For example, let P be the hybrid program modeling

an autonomous vehicle with sensors shown in Figure 3, then

FV(P ) = {A,B, ǫ, v, d}, BV(P ) = {t, v, d, a, t′, v′, d′}, and

VAR(P ) = {A,B, ǫ, t, v, d, a, t′, v′, d′}. Formal definitions of

BV(P ), FV(P ), and VAR(P ) are included in Appendix A.

III. MODELING SENSOR ATTACKS

In this section, we explain how we model the sensor attacks

in hybrid programs. In particular, we introduce how sensor

readings are modeled and describe our threat model.

A. Modeling Sensor Readings

Hybrid programs typically conflate the values of variables in

the physical model and the values ultimately perceived by

the sensor. For example, in Figure 3, the hybrid program

We follow the naming convention of related work on hybrid programs by
using the names of free variables and bound variables [26].

1 Definitions.

2 R ǫ. /* time limit for control */

3 R A. /* acceleration rate */

4 R B. /* braking rate */

5 B φpre ≡ A ≥ 0 ∧B ≥ 0 ∧ 2Bdp > v2p
6 B φpost ≡ dp > 0

7 B ψ ≡ 2Bds > v2s + (A+B)(Aǫ2 + 2vsǫ)

8 HP accel ≡ ?ψ; a := A

9 HP brake ≡ a := −B

10 HP ctrl ≡ vs := vp; ds := dp; (accel ∪ brake); t := 0

11 HP plant ≡ d′p = −vp, v
′

p = a, t′ = 1 & (vp ≥ 0 ∧ t ≤ ǫ)

12 ProgramVariables.

13 R t. /* clock variable */

14 R dp. /* distance to obstacle (physical) */

15 R vp. /* vehicle velocity (physical) */

16 R ds. /* distance to obstacle (sensed) */

17 R vs. /* vehicle velocity (sensed) */

18 R a. /* acceleration of the vehicle */

19 Problem.

20 φpre → [(ctrl; plant)
∗
]φpost

Fig. 4: HP model of an autonomous vehicle with sensors

contains a single continuous variable v that represents the

value measured by a sensor; the model does not separate

the model’s representation of the value of v in the physical

model from the software component’s representation of v.

Therefore, our analysis begins with a hybrid program Porig in

which sensor reads are not explicitly modeled. We construct a

program P that is equivalent to Porig but separately represents

sensor reads and requires that variables holding sensor reads

are equal to the underlying sensor’s value. For example, vp
may represent the actual physical velocity of a vehicle and it

changes according to laws of physics, and vs may represent

the variable in the controller into which the sensor’s value is

read. In model P we have the constraint vs = vp. From P

we can derive additional models that allow sensed values to

differ from actual physical values. For example, a model that

represents the compromise of the velocity sensor would be

identical to P except that the constraint vs = vp is removed,

allowing vs to take arbitrary values. Similar modifications to P

can represent the compromise of other sensors, or of multiple

sensors at the same time.

As an example, Figure 4 shows a HP model of an autonomous

vehicle introduced in Figure 3 whose hybrid program separates

physical and sensed values: vp and dp are physical values of

velocity and distance, while vs and ds are the corresponding

sensed values. Note that the ctrl program sets the sensed

values equal to the physical values (line 10).

B. Threat Model

We allow attackers to arbitrarily change sensed values. We are

not concerned with the physical mechanisms by which an at-

tacker compromises a sensor. Instead, we model sensor attacks

as assignments to variables that represent sensed values. Let P

be a hybrid program, SA ⊆ BV(P ) be a set of distinguished

variables corresponding to sensors that may be vulnerable to

attacks, the sensor attack on P is defined as follows:

Definition 1 (SA-sensor attack). For a hybrid program P

of the form (ctrl;plant)
∗ and a set of variables SA

⊆ BV(P ), the SA-sensor attack on program P , denoted



ATTACKED(P, SA), is the program obtained from P by re-

placing all assignments to variable v ∈ SA with assignment

v := ∗.

For example, let P be the hybrid program (ctrl;plant)
∗

modeling an autonomous vehicle with separate physical and

sensed values shown in Figure 4. If the velocity sensor

vs is under attack, program ATTACKED(P, {vs}) would be

(ctrl′;plant)∗ where ctrl′ is the following:

vs := ∗; ds := dp; (accel ∪ brake); t := 0.

Note that with such a threat model, only the ctrl part of

a program (ctrl;plant)
∗ is modified by an attack, i.e.,

ATTACKED((ctrl; plant), SA) = (ATTACKED(ctrl, SA));

plant. Intuitively, it means a sensor attack does not directly

affect the physical dynamics with which the system interacts.

C. Robustness to Sensor Attacks

We explore the impact of an SA-sensor attack by studying

two relational properties that characterize the robustness of the

system to the attack: (1) whether a SA-sensor attack affects

the safety of the system and (2) whether a SA-sensor attack

affects the system’s high-integrity state.

a) Robust Safety: Safety is critical in many cyber-physical

systems, e.g., a vehicle should not collide with obstacles and

pedestrians. We first present the definitions of safety and our

relational property robust safety, and then show an example.

Definition 2 (Safety). A hybrid program P of the form

(ctrl;plant)
∗ is safe for φpost assuming φpre, denoted

SAFE(P, φpre, φpost), if the formula φpre → [P ]φpost holds.

This definition says P is safe if for any execution of P whose

starting state satisfies φpre, its ending state satisfies safety

condition φpost.

A system is robustly safe if compromise of sensors SA does

not affect whether the system is safe. Note that robust safety

does not require that the attacked system is safe; instead it

requires that if the original system is safe, then the attacked

system is also safe. The distinction is important: it allows us

to separate the task of reasoning about safety from the task

of reasoning about sensor attacks. Indeed, as we will see in a

case study in Section VI, it is possible to prove robust safety

even when it is beyond current techniques to prove safety.

Definition 3 (Robust safety). For a hybrid program

P of the form (ctrl;plant)
∗ and a set of

variables SA ⊆ BV(P ), P is robustly safe for φpost
assuming φpre under the SA-sensor attack, denoted

ROBUST(P, φpre, φpost, SA), if SAFE(P, φpre, φpost) implies

SAFE(ATTACKED(P, SA), φpre, φpost).

For example, let P be the hybrid program modeling an

autonomous vehicle with sensors shown in Figure 4. P is

safe for φpost assuming φpre (i.e., SAFE(P, φpre, φpost)).
However, P is not robustly safe for φpost assuming

φpre under SA-sensor attack where SA is {vs}, since

SAFE(ATTACKED(P, SA), φpre, φpost) doesn’t hold.

1 ...

2 HP voting ≡ vs1:= vp; vs2:= vp; vs3:= vp;

3 ( (?vs1 = vs2; vs:= vs1)

4 ∪ (?vs1 = vs3; vs:= vs1)

5 ∪ (?vs2 = vs3; vs:= vs2) )

6 HP ctrl ≡ voting; ds := dp; (accel ∪ brake); t := 0

7 ...

Fig. 5: HP model of an autonomous vehicle with sensor voting

1 ...

2 R T. /* target temperature */

3 HP ctrlt ≡ temps:= tempp;

4 ( (?temps > T; thermo:= -1)

5 ∪ (?temps < T; thermo:= 1)

6 ∪ (?temps = T) )

7 HP ctrl ≡ ctrlt;

8 vs:= vp; ds:= dp; (accel ∪ brake); t := 0

9 HP plant ≡ d′p = −vp, v
′

p = a, temp′p = thermo; t′ = 1

10 & (vp ≥ 0 ∧ t ≤ ǫ)

11 ProgramVariables.

12 R temps. /* interior temperature (sensed) */

13 R tempp. /* interior temperature (physical) */

14 R thermo. /* thermostat command */

15 ...

Fig. 6: HP model of an autonomous vehicle with interior temperature
control

The system can be modified so that it does satisfy robust safety.

For example, we can modify the system to use three velocity

sensors (perhaps measuring velocity by different mechanisms)

and use a voting scheme to determine the current velocity.

Figure 5 shows a model of such a modified system. The

physical velocity vp is sensed by three sensors (line 2), and

voting performed to determine the final reading vs (lines 3–5).

The contents elided in Figure 5 are the same as Figure 4.

Let P be the hybrid program modeling an autonomous vehicle

with duplicated sensors shown in Figure 5. For any set SA ∈
{{vs1}, {vs2}, {vs3}}, program P is robustly safe under SA-

sensor attack, i.e., P is robustly safe if at most one of the

velocity sensors is compromised. Intuitively, this is because

vs = vp holds after running program voting, even if up to one

of the velocity sensors is compromised. A systematic approach

for proving robustness safety is presented in Section V.

b) Robustness of High-Integrity State: Sensors that may be

compromised are low integrity: the sensed values might be

under the control of the attacker. By contrast, parts of the

system state might be deemed to be high integrity: their values

are critical to the correct and secure operation of the system.

Low-integrity sensor readings should not be able to affect a

system’s high-integrity state. For example, an attacker with

access to a car’s interior temperature sensor should not be

able to affect the control of the car’s velocity.

We can state this requirement as a relational property: we say

the high-integrity state is robust if, for any execution of the

system with its low-integrity sensors compromised, there is an

execution of the non-compromised system that can achieve the

same values on all high-integrity variables. We delay formal

definition of robustness of high-integrity state to Section IV.

Let’s consider an example. Figure 6 presents a HP model



of an autonomous vehicle with sensors shown in Figure 4

but added with interior temperature control (elided contents

in Figure 6 are the same as Figure 4). The vehicle has

sensor readings of interior temperature (temps). The physical

temperature (tempp) changes according to thermo that is set

by ctrlt after comparing temps with target temperature T

(lines 4–6). In this example, the temperature sensor is low-

integrity and may be compromised.

A system designer may want to understand if such an attack

can interfere with the vehicle’s high-integrity state such as its

velocity. Let P be the model of an autonomous vehicle with

interior temperature control shown in Figure 6. Intuitively, its

velocity (i.e., variable vp) is robust with respect to sensor

temps: for any execution of ATTACKED(P , {temps}), we have

an execution of P that can produce the same values of vp at

every control iteration. The system does satisfy robustness of

high-integrity state, and we will prove it in Section V.

IV. H-EQUIVALENCE

This section introduces H-equivalence, a notion of equivalence

that allows us to reason about our relational properties.

A. Equivalence of Hybrid Programs

Intuitively, H-equivalence of two programs means that for

every execution of one program, there exists an execution of

the other program such that the two executions agree on set H
initially and at the end of every control loop iteration, where

H is a set of high-integrity variables.

The formal definition of H-equivalence of programs builds on

H-equivalence of program states.

Definition 4 (H-equivalence of program states). For states

ω1, ω2 ∈ STA and a set of variables H, states ω1 and ω2 are

H-equivalent, denoted ω1 ≈H ω2, if they agree on valuations

of all variables in the set H; i.e., ∀x ∈ H, ω1(x) = ω2(x).

Definition 5 (H-equivalence of programs). For hybrid pro-

grams P1 = α∗, P2 = β∗, and a set of variables H, P1 and

P2 are H-equivalent, denoted P1 ≈H P2, if they satisfy the

following:

∀n : N

∀ω0, ω1 . . . ωn : STA such that ∀i ∈ 0...(n− 1),

(ωi, ωi+1) ∈ JαK (respectively JβK)

∃ν0, ν1...νn : STA such that ∀j ∈ 0...(n− 1),

(νj , νj+1) ∈ JβK (respectively JαK)

and ∀k ∈ 0...n, ωk ≈H νk

In the definition, the number n corresponds to an arbitrary

number of loop iterations, and the last line indicates that the

two executions agree on H at the beginning and end of every

loop iteration. The definition is symmetric.

This definition can be readily adjusted for loop-free programs.

Definition 6 (H-equivalence of loop-free programs). For two

loop-free hybrid programs α and β, and a set of variables H,

α and β are H-equivalent, denoted α ≈H β, if they satisfy

the following:

∀ω0, ω1 : STA such that (ω0, ω1) ∈ JαK (respectively JβK)

∃ν0, ν1 : STA such that

(ν0, ν1) ∈ JβK (respectively JαK) ∧ ω0 ≈H ν0 ∧ ω1 ≈H ν1

Note that Definition 5 is defined in lock-step, i.e., both loops

iterate exactly the same number of times [29]. As pointed

out by previous work [30], a lock-step approach is sometimes

not flexible enough to express and verify some properties,

e.g., properties that may hold for two programs that execute

for different numbers of iterations. However, such a lock-

step definition is reasonable in our setting. According to the

threat model, we are comparing a system with compromised

sensors and a system with uncompromised sensors and so the

attack should not affect the rate of a system’s control (i.e.,

how frequently the system’s control loop executes). Thus,

the robustness of a system is correctly encoded by a lock-

step definition, in which states of a system with and without

compromised sensors are consistent after every loop iteration.

An additional benefit of this definition is that it is more

tractable for verification, which we will explore in Section V.

B. Reasoning about Robustness using H-equivalence

The H-equivalence relation can be used to reason about our

two relational properties.

a) Reasoning about Robustness of Safety: Robustness of

safety can be established by proving H-equivalence with the

help of the following theorem, which states that if program

P is H-equivalent to ATTACKED(P, SA) where H is the free

variables of formulas φpre and φpost, then P is robustly safe

for φpost assuming φpre under the SA-sensor attack.

Theorem 1 (H-equivalent programs are robustly safe). For

a hybrid program P of the form (ctrl;plant)
∗, a set of

variables SA ⊆ BV(P ), and formulas φpre and φpost, if

P ≈FV(φpre∧φpost) ATTACKED(P, SA), then

ROBUST(P, φpre, φpost, SA)

A proof is in Appendix B. Intuitively, the theorem holds

because if there were an execution of attacked program such

that φpre held at the beginning but φpost did not hold at the

end of a loop, then there must be an execution of P where

the same is true, contradicting the assumption that P is safe.

Note that the converse of Theorem 1 does not hold, i.e.,

if ROBUST(P, φpre, φpost, SA), it is not always true that

P ≈FV(φpre∧φpost) ATTACKED(P, SA). For example, let P be

the program (b := 1; a := b)∗, formula φpre be a > 0, φpost
be b > 0, and SA be {a}. Then ROBUST(P, φpre, φpost, SA)
holds, but P ≈{a,b} ATTACKED(P, SA) does not hold since

some executions of ATTACKED(P, SA) (i.e., (b := 1; a := ∗)∗)

do not have a matching execution of P .

Theorem 1 reduces proving robustness of safety to proving

H-equivalence, which can be achieved by the techniques

introduced in Section V.



b) Reasoning about Robustness of High-Integrity State:

H-equivalence directly expresses robustness of high-integrity

state by letting H be the set of high-integrity variables.

Therefore, proving robustness of high-integrity state is the

same as proving H-equivalence of the high-integrity state. The

following definition makes this clear.

Definition 7 (Robustness of high-integrity state). For program

P of the form (ctrl;plant)
∗ and a set of variables SA

⊆ BV(P ), and set of variables H, P satisfies robustness of

high-integrity state H under the SA-sensor attack if P ≈H

ATTACKED(P, SA).

V. PROVING H-EQUIVALENCE

We present two sound techniques for reasoning about

H-equivalence.

A. Decomposition Approach

Our first approach proves H-equivalence of programs by

decomposing the proof obligation into simpler obligations for

components of the programs. This relies on various composi-

tional properties of H-equivalence, stated here and proven in

Appendix B.

Theorem 2. For all loop-free hybrid programs A, B, C, D

and sets H and H′ of variables, the following properties hold:

1. A ≈H A;

2. If H ⊆ H′ and A ≈H′ B, then A ≈H B;

3. If A ≈H B and (VAR(A) ∪ VAR(B)) ∩ H′ = ∅, then

A ≈H∪H′ B;

4. If FV(C) ∪ FV(D) ⊆ H, A ≈H B, and C ≈H D, then

(A;C) ≈H (B;D);

5. If FV(A)∪ FV(B) ⊆ H and A ≈H B, then A∗ ≈H B∗.

Sequential composition (Property 4) is particularly useful. The

condition FV(C) ∪ FV(D) ⊆ H ensures that H includes

all variables that might affect the evaluation of programs C

and D. We use this property when considering H-equivalence

of ctrl; plant and ATTACKED(ctrl; plant, SA) =
ATTACKED(ctrl, SA); plant. In particular, if H includes

the actuators by which the controller interacts with the physical

environment, then ctrl ≈H ATTACKED(ctrl, SA) ensures

that the physical dynamics (i.e., program plant) can evolve

identically in both the attacked and unattacked systems.

Consider the previously presented model of an autonomous

vehicle with three velocity sensors shown in Figure 5, and

let P be its hybrid program (ctrl; plant)
∗ and α be pro-

gram P with voting excluded, i.e., P = (voting;α)∗ and

ATTACKED(P, {vs1}) = (ATTACKED(voting, {vs1});α)
∗.

Here, FV(voting) = FV(ATTACKED(voting, {vs1})) =

{vp}, FV(α) = {vs, vp, dp, A,B, ǫ}, and FV(voting;α) =
FV(ATTACKED(voting, {vs1});α) = {vp, dp, A,B, ǫ}.

By definition of ≈H, we know voting ≈{vs,vp}

ATTACKED(voting, {vs1}). By Property 3, we get

voting ≈FV(α) ATTACKED(voting, {vs1})

Then by Property 2,

(voting;α) ≈FV(voting;α) (ATTACKED(voting, {vs1});α)

Since α ≈FV(voting;α) α (Property 1), by Property 4 we know,

voting;α ≈FV(voting;α) ATTACKED(voting, {vs1});α

By Property 5, we get

(voting;α)∗ ≈FV(voting;α) (ATTACKED(voting, {vs1});α)
∗

The free variables of φpre ∧ φpost (shown in Figure 4)

are {vp, dp, A,B, ǫ}, the same as FV(voting;α). Thus, by

Theorem 1, we have ROBUST(P, φpre, φpost, {vs1}).

B. Self-Composition Approach

The second approach toward proving H-equivalence is in-

spired by self-composition [24], [31], a proof technique often

used for proving noninterference [19], [20]. Noninterference

is a well-known strong information security property that,

intuitively, guarantees that confidential inputs do not influence

observable outputs, or dually guarantees that low-integrity

inputs of a system do not affect high-integrity outputs. Nonin-

terference is a relational property: it compares two executions

of a program with different low-integrity inputs.

To develop an intuition for how the self-composition tech-

nique is used to prove noninterference, consider the problem

of checking whether low-integrity inputs of a deterministic

program affect high-integrity outputs. Construct two copies

of the program, renaming the program variables so that the

variables in the two copies are disjoint. Set the high-integrity

inputs in both copies to identical values but allow the low-

integrity inputs to take different values. Now, sequentially

compose these two programs together. If the composed pro-

gram can terminate in a state where the corresponding high-

integrity outputs differ, then the original program does not

satisfy noninterference; conversely, if in all executions of the

composed program, the high-integrity outputs are the same,

then the original program satisfies noninterference. Intuitively,

the composition of the two copies allows a single program to

represent two executions of the original program, reducing

checking a relational property of the original problem to

checking a safety property of the composed program.

Using the same insights, we develop a self-composition

technique for hybrid programs, allowing us to use existing

verification tools such as KeYmaera X (which can reason

about safety properties of hybrid programs) to reason about

H-equivalence of two hybrid programs.

It is non-trivial to adapt the self-composition approach to hy-

brid programs due to the nondeterminism in hybrid programs.

In particular, to show that two executions of the same hybrid

program are in an appropriate relation, it may be necessary

to force (some of) the nondeterminism in the two executions

to resolve in the same way. For example, a nondeterministic

choice in a hybrid program may represent a decision by a

driver to brake or accelerate; the driver’s decision is assumed

to be a high-integrity input, and so the resolution of the

nondeterministic choice should be the same in both executions.



The self-composition must somehow couple the nondeter-

ministic choices to ensure this. Nondeterministic assignment

must be similarly handled, i.e., resolution of high-integrity

nondeterminism must be coupled in the two executions.

An additional source of nondeterminism in hybrid programs

is the duration of physical evolution. The program construct

for physical dynamics, x′ = θ&φ, specifies that the variable(s)

evolve according to the differential equation system x′ = θ for

an arbitrary duration within the region described by formula

φ. The duration is chosen nondeterministically.

Our self-composition technique takes as input a program P

and set of sensor variables SA and creates a program that rep-

resents an execution of each of P and ATTACKED(P, SA). We

ensure that the composed program (1) resolves high-integrity

nondeterministic choices and assignments the same in both

executions; and (2) has the same duration for corresponding

physical evolutions.

To ensure that the two executions are appropriately related,

we produce a formula that encodes that the two executions

have the same values for high-integrity variables; we assume

this formula holds at the beginning of the executions, and

require the formula to hold at the end of every control iteration.

If we can prove that this is the case, then we have proved

that if the two executions (1) have the same values for high-

integrity inputs at the beginning of their executions, (2) follow

the same decisions on high-integrity nondeterminism during

their executions, and (3) evolve for the same duration, then

the two executions have the same values for high-integrity

variables at the end of every control iteration.

Our self-composition approach has some limitations on the

hybrid programs to which it applies. First, it is applicable

only for hybrid programs of the form (ctrl; plant)
∗.

Second, it is applicable only for hybrid programs that have

total semantics for low-integrity inputs. Intuitively, it means

if a program has a valid execution for an input state ω (i.e.,

exists a state ν such that (ω, ν) ∈ JP K), then the program

has a valid execution for every input state that differs with ω

only on low-integrity inputs. The reason for this requirement

is that self-composition uses a single program to represent

two executions; this composed program has a valid execution

only if both executions are valid. Since the two executions

differ only on low-integrity inputs, our technique works only

if semantics of the unattacked program is total on low-integrity

inputs. A straightforward syntactic checker can be developed

to check whether a hybrid program meets this requirement.

More discussion about the limitation and the syntactic checker

can be found in Appendix C.

The rest of this section describes in detail our self-composition

approach: how to construct a single program that represents

an execution of P and ATTACKED(P, SA), and then prove it

correct. At a high level, our approach works by (1) converting

program P to a canonical form Pcanon that makes high-

integrity nondeterministic choices and assignments explicit;

1 ...

2 HP choices ≡ c:= ∗

3 HP ctrl ≡ choices; ctrlt; vs:= vp; ds:= dp;

4 (if (c) then accel else brake); t := 0

5 ...

6 ProgramVariables.

7 B c. /* choice variable */

8 ...

Fig. 7: HP model of an autonomous vehicle with interior temperature
control shown in Figure 6 whose hybrid program is rewritten to
canonical form with a choice variable c

and then (2) composing Pcanon and ATTACKED(Pcanon , SA)
to ensure that the values of high-integrity nondeterministic

choices and assignments, and evolution durations are the same

for both executions.

a) Canonical Form for Hybrid Programs: Given a hybrid

program of the form (ctrl; plant)∗, we rewrite it to a canonical

form (choices; ctrl′; plant)∗ such that (1) each high-integrity

nondeterministic choice α∪β in ctrl is turned into a construct

if c then α else β in ctrl′, and (2) each high-integrity non-

deterministic assignment x := ∗ in ctrl is turned into x := c

in ctrl′, where c is a fresh variable, and choices contains

a nondeterministic assignment c := ∗. The program fragment

choices consists solely of a sequence of these nondeterministic

assignments to these choice variables. Note that (ctrl; plant)∗

is semantically equivalent to (choices; ctrl′; plant)∗.

The goal of the canonical form is to make it easier to share

the same nondeterministic choices and assignments between

the two executions: when we compose the two programs, they

will essentially share the same choices program.

For example, Figure 7 shows the previously presented model

of an autonomous vehicle with interior temperature control

shown in Figure 6 whose hybrid program is rewritten to the

canonical form (elided contents in Figure 7 are the same as

Figure 6). The program has a nondeterministic choice variable

c that represents a decision to brake or accelerate. This choice

is considered high-integrity.

b) Hybrid Program with Renaming: Note that program P and

ATTACKED(P, SA) have the same set of variables. To compare

executions of P and ATTACKED(P, SA) in a composition, we

need to rename bound variables in one of the two programs.

Renaming is needed only for bound variables, since their

values may differ during executions. Other variables are read-

only and their values will be the same for executions of

program P and ATTACKED(P, SA). Thus, these variables can

be shared by both programs, and renaming is not needed.

To help us with renaming, we define renaming functions that

map all and only the bound variables of a program to fresh

variables.

Definition 8 (Renaming function). For hybrid program P ,

function ξ : VAR(P ) → V (where V is a set of variables) is

a renaming function for P if:

Construct if φ then α else β is syntactic sugar for (?φ;α)∪(?¬φ;β).



1) ξ is a bijection;

2) For all x ∈ BV(P ), ξ(x) 6∈ VAR(P );

3) For all x ∈ VAR(P ) \ BV(P ), ξ(x) = x.

We write ξ(P ) for the program identical to P but whose

variables have been renamed according to function ξ. We

also apply renaming functions to states and formulas, with

the obvious meaning.

c) Interleaved Composition: We develop an interleaved com-

position that composes two programs so their executions have

the same values for high-integrity nondeterministic choices

and assignments, and last the same evolution duration.

Definition 9 (Interleaved composition). Given a hybrid pro-

gram P = (choices; ctrl; (x′ = θ&φ))∗ in canonical form, a

renaming function ξ for P , a set of variables SA ⊆ BV(P ), the

interleaved composition of P under SA attack with renaming

function ξ, denoted IC(P, SA, ξ), is the following program:

(choices; ctrl; SUB(choices, ξ); ξ(ATTACKED(ctrl, SA));

(x′ = θ, ξ(x′ = θ)&φ ∧ ξ(φ)))∗

Where function SUB(choices, ξ) replaces ci := ∗ in program

choices with ξ(ci) := ci for all variables ci in BV(choices).

The composition has the following properties: (1) control

components from two programs are executed sequentially (i.e.,

choices; ctrl; SUB(choices, ξ); ξ(ATTACKED(ctrl, SA))); (2)

plants are executed in parallel (i.e., x′ = θ, ξ(x′ = θ)) [32]; (3)

the evolution constraint is a conjunction of the two evolution

constraints (i.e., φ ∧ ξ(φ)), and (4) nondeterministic choices

in choices used by ctrl and their counterparts used by

ξ(ATTACKED(ctrl, SA)) have the same values.

For example, let P be the previously presented hybrid pro-

gram (in canonical form) of an autonomous vehicle with

interior temperature control shown in Figure 7. Figure 8

shows IC(P, {temps}, ξ), where function ξ renames bound

variables in ATTACKED(P, SA) with subscript 1. Program

ctrl
′ and Plant

′ compose two programs as described in

Definition 9 (lines 27–30). Line 18 shows the effect of function

SUB(choices, ξ): substituting c = ∗ with c1 = c in choices.

The choice represents a decision to accelerate or brake, which

is high-integrity. The resolution of this choice should be the

same in both executions.

d) Proving H-equivalence with an Interleaved Composition:

Given an interleaved composition IC(P, SA, ξ), to prove that

two programs are H-equivalent on a set H, we need to

first identify a set η of high-integrity variables on which the

evaluation of variables in H depend. Then we construct a

formula to express that the two program executions have the

same values for variables in set η, and finally prove that, for

any execution of the composition, if the formula holds initially,

it would hold at the end of every control loop iteration of the

execution.

Definition 10 (Equivalence formula). For a set η of variables,

a renaming function ξ such that η ⊆ dom(ξ), the equivalence

1 Definitions.

2 R ǫ. /* time limit of control */

3 R A. /* acceleration rate */

4 R B. /* braking rate */

5 R T. /* target temperature */

6 B eqη ≡ vp = vp1 ∧ dp = dp1
7 B ψ ≡ 2Bds > v2s + (A+B)(Aǫ2 + 2vsǫ)

8 HP choices ≡ c:= ∗

9 HP ctrlt ≡ temps:= tempp;

10 ( (?temps > T; thermo:= -1)

11 ∪ (?temps < T; thermo:= 1)

12 ∪ (?temps = T) )

13 HP accel ≡ ?ψ; a := A

14 HP brake ≡ a := −B

15 HP ctrl ≡ ctrlt; vs:= vp; ds:= dp;

16 (if (c) then accel else brake); t := 0

17 B ψ1 ≡ 2Bds1 > v2s1
+ (A+B)(Aǫ2 + 2vs1ǫ)

18 HP choices1 ≡ c1:= c

19 HP ctrlt1 ≡ temps1:= *;

20 ( (?temps1 > T; thermo1:= -1)

21 ∪ (?temps1 < T; thermo1:= 1)

22 ∪ (?temps1 = T) )

23 HP accel1 ≡ ?ψ1; a1 := A

24 HP brake1 ≡ a1 := −B

25 HP ctrl1 ≡ ctrlt1; vs1:= vp1; ds1:= dp1;

26 (if (c1) then accel1 else brake1); t1 := 0

27 HP ctrl
′ ≡ choices; ctrl; choices1; ctrl1

28 HP plant
′ ≡ d′p = −vp, v

′

p = a, temp′p = thermo, t′ = 1

29 d′p1
= −vp1 , v

′

p1
= a1, temp

′

p1
= thermo1, t

′

1 = 1

30 & (vp ≥ 0 ∧ vp1 ≥ 0 ∧ t ≤ ǫ ∧ t1 ≤ ǫ)

31 ProgramVariables.

32 B c, c1. /* choice variables */

33 R t, t1. /* clock variables */

34 R dp, dp1. /* distance to obstacle (physical) */

35 R ds, ds1. /* distance to obstacle (sensed) */

36 R vp, vp1. /* vehicle velocity (physical) */

37 R vs, vs1. /* vehicle velocity (sensed) */

38 R a, a1. /* acceleration of the vehicle */

39 R temps, temps1. /* interior temperature (sensed) */

40 R tempp, tempp1. /* interior temperature (physical) */

41 R thermo, thermo1. /* rates of change for temperature */

42 Problem.

43 eqη → [(ctrl
′
; plant

′
)
∗
]eqη

Fig. 8: Interleaved composition of the hybrid program (in canonical
form) modeling an autonomous vehicle with interior temperature
control shown in Figure 7

formula of η and ξ, denoted eqξη, is defined as:

eqξη ≡
∧

x∈η

(x = ξ(x))

Then the desired property is, for any execution of the compo-

sition, if the equivalence formula holds at the beginning of an

execution, it holds at the end of every control loop iteration of

the execution. That means, we want to prove the following:

eqξη → [IC(P, SA, ξ)]eq
ξ
η

For example, eqη in Figure 8 (line 6) encodes that the two

executions have the same position (dp = dp1 ) and velocity

(vp = vp1 ). The desired property is shown at line 43.

We have proven this property using Keymaera X. Intuitively,

proving this property means that for any execution of the

autonomous vehicle model, whether or not its temperature

sensor is compromised, if the vehicle starts with the same

position and velocity, makes the same control decisions for



acceleration and brake, and runs for the same duration, it

would end with the same position and velocity.

e) Soundness: The soundness theorem links the self-

composition approach with proving H-equivalence. Proof of

this theorem is based on trace semantics of hybrid pro-

grams [33], [34] and can be found in Appendix D.

Theorem 3 (Soundness of the self-composition approach). For

hybrid program P and Pc, a set SA ⊆ BV(P ), a renaming

function ξ of Pc, a set of variables η ⊆ BV(P ), and a set H
⊆ η, if Pc is P in canonical form, SA ∩ η = ∅, and eqξη →
[IC(Pc, SA, ξ)]eq

ξ
η, then P ≈H ATTACKED(P, SA).

Note that the condition SA ∩ η = ∅ indicates that the adversary

cannot compromise high-integrity variables.

f) Applicability: Our self-composition technique applies to a

subset of problems of interest rather than general problems. In

particular, our technique requires that two executions having

the same duration at every control iteration for the plant,

and identical values for high-integrity nondeterministic assign-

ments. Our self-composition technique cannot be applied to

compare two executions that evolve for different durations or

that resolve high-integrity nondeterministic choices and high-

integrity nondeterministic assignments differently. However,

these restrictions arise naturally for many systems. First,

requiring the same duration of evolution for both executions

corresponds to the control system having the same frequency

of operation. That is, the rate of the the system’s control

can’t be influenced by the attacker. Second, high-integrity

non-deterministic choices and high-integrity non-deterministic

assignments are used to model exactly the nondeterminism

that cannot be influenced by the attacker. As such, they

should be resolved the same in both executions. For example,

when considering how a corrupted temperature sensor can

affect a (non-autonomous) vehicle, the driver’s decisions (i.e.,

whether to accelerate or brake) would be modeled with a high-

integrity nondeterministic choice, since we are concerned with

understanding the relationship between two executions where

the driver makes the same decisions but in one execution the

sensor is corrupted. If in the two executions the driver is

making different choices, the two executions might diverge

almost arbitrarily, even if the corrupted sensor has no security

impact. If, on the other hand, we want to use this technique to

determine whether an autonomous vehicle’s driving subsystem

can be influenced by a corrupted temperature sensor, we

would need a more precise model of the system that does not

use nondeterministic choice between accelerating and braking

to model the driving subsystem’s decisions. That is, high-

integrity nondeterministic choices are by assumption choices

that cannot be influenced by the attacker.

VI. CASE STUDIES

To demonstrate the feasibility and efficacy of our approach,

we conduct three case studies of non-trivial systems. The

first two case studies analyze robustness of safety with the

1 Definitions.

2 HP ctrl ≡ ωs:= ωp; vs:= vp;

3 λc:=
vs − ωs ∗ R

vs
; λp:=

vp − ωp ∗ R

vp
;

4 µp:= C1(1 − e−C2λp ) − C3λp;

5 ( (?λc < λref ; BRAKE:= 0; Tb:= 0)

6 ∪ (?λc = λref ; ?True)

7 ∪ (?λc > λref ; BRAKE:= 1; Tb:= 1200) ); t := 0

8 HP Plant ≡ v′p =
− µpFN

m
,ω′

p =
µpFNR− Tb

J
, t′ = 1

9 & vp ≥ 0 ∧ ωp ≥ 0 ∧ t ≤ ǫ

10 B φpre ≡ (vp = 100 ∧ ωp ≥ 0)

11 B φpost ≡ (vp > 25 → ωp ≥ 1)

12 R ǫ. /* control interval */

13 R C1, C2, C3. /* constant for computing µ */

14 R J,R. /* wheel inertia and wheel radius */

15 R FN ,m. /* normal force and vehicle mass */

16 R λref . /* reference value of wheel slip ratio */

17 ProgramVariables.

18 R BRAKE. /* brake status */

19 R Tb. /* braking torque */

20 R ωp, ωs. /* wheel speed (physical and sensed ) */

21 R vp, vs. /* vehicle speed (physical and sensed) */

22 R λp, λc. /* wheel slip (physical and calculated) */

23 R µp. /* adhesion coefficient */

24 R t. /* clock variable */

25 Problem.

26 φpre → [(ctrl; plant)∗]φpost

Fig. 9: HP model of an ABS system

decomposition approach, and the third one proves robustness

of high-integrity state with the self-composition approach.

A. Case Study: an Anti-lock Braking System

System designers may wonder if the system is robustly safe

against sensor attacks or if their countermeasures are effective.

This case study demonstrates analyzing robustness of safety

with the decomposition approach in an Anti-lock Braking

System (ABS). An ABS is a safety braking system used on

aircraft and vehicles. It operates by preventing the wheels from

locking up during braking, thereby maintaining tractive contact

with the road surface. ABS monitors the speed of wheels using

the wheel-speed sensors. If the controller sees that one wheel

is decelerating at a rate that couldn’t possibly correspond to

the vehicle’s rate of deceleration, it reduces the brake pressure

applied to that wheel, which allows it to turn faster. Once the

wheel is back up to speed, it applies the brake again [35].

a) Modeling ABS: Figure 9 shows a model of an ABS system

[36], [37]. The model assumes a single wheel and uses a

simple controller that turns on and off maximum braking

torque. Intuitively, ABS systems are designed to achieve the

maximum friction under certain circumstances (e.g., braking

on icy road surface). They achieve this by maintaining an ideal

slip ratio (e.g., λref in Figure 9). Our controller switches the

brake on and off based on the calculated slip ratio (λc) and

reference slip ratio (lines 5–7). The calculated slip ratio is

computed using sensed wheel speed and vehicle speed (lines

2–3). The physical slip ratio (λp) depends on physical wheel

speed (vp) and vehicle speed (wp), which are affected by

braking torque (Tb) and adhesion coefficient (µp) that depends

on the physical slip ratio (line 4).



The initial condition of the ABS system (φpre) is that the

vehicle is moving at a high speed and its wheel speed is

not negative (line 10). The safety condition (φpost) is that the

vehicle’s wheel should not lock if the current vehicle speed is

large (line 11) [38].

b) Modeling Non-invasive Attack on ABS: Previous research

has demonstrated attacks on ABS through physical channels

[39]. By placing a thin electromagnetic actuator near the ABS

wheel-speed sensors, an attacker can inject magnetic fields to

both cancel the true measured signal and inject a malicious

signal, thus spoofing the measured wheel speeds. Such an

attack is a SA-sensor attack, where SA = {ωs}, on the

wheel-speed sensor. Let P be the hybrid program modeling

an ABS system shown in Figure 9. Then ATTACKED(P, {ωs})
is program P with line 2 changed into the following:

ctrl ≡ ωs := ∗; vs := vp

Program P is not robustly safe when the sensor ωs
is compromised: assuming SAFE(P, φpre, φpost) holds,

SAFE(ATTACKED(P, {ωs}), φpre, φpost) doesn’t necessarily

hold, since ωs can be an arbitrary value.

c) Designing Robustly Safe ABS System: System designers,

in attempts to make ABS system modeled in Figure 9 safer,

would be confident in their design if the system with counter-

measures can be proven to be robustly safe against the attack.

Assume that designers deploy three wheel-speed sensors and

a majority voting scheme in the ABS system modeled in

Figure 9. The countermeasure can be modeled by changing

line 2 in Figure 9 into the ctrl≡voting;vs := vp;, where

voting is the following:

voting ≡ ωs1 := ωp; ωs2 := ωp; ωs3 := ωp;

if (ωs1 = ωs2 ∨ ωs1 = ωs3)

then ωs := ωs1 else ωs := ωs2
Using the decomposition approach, we can prove that such an

ABS system is robustly safe if only one wheel-speed sensor

is compromised. The proof can be found in Appendix B.

B. Case study: Boeing 737-MAX

Robustness of safety is a relational property: if the original

system is safe then the attacked system will be safe too.

Importantly, this separates reasoning about the implications

of sensor attacks from reasoning directly about safety prop-

erties. Proving a system’s safety is often labor-intensive and

may even be epistemically problematic. For example, many

systems must be verified and validated empirically because

their correctness properties are not possible to state in a formal

language. However, when it is not easy or even impossible to

formally verify safety, it is often still possible to prove that

compromised sensors do not affect the safety property.

To demonstrate this advantage of relational reasoning, we

present a case study inspired by the Boeing 737-MAX Ma-

neuvering Characteristics Augmentation System (MCAS) [40].

The 737-MAX’s dynamics are extremely complicated, and

proving properties about similar stabilization systems is an

1 Definitions.

2 B φpre /* preconditions (abstract) */

3 B φpost /* functional safety property (abstract) */

4 HP plant. /* plane’s dynamics (abstract) */

5 HP MCAS. /* MCAS actuation (abstract) */

6 HP ctrlaoa ≡ ( (sL := aoap; sR := ∗)

7 ∪ (sL := ∗; sR := aoap) );

8 (aoas := sL ∪ aoas := sR)

9 HP ctrl ≡ ctrlaoa; MCAS(aoas)

10 ProgramVariables.

11 R aoap. /* physical AOA */

12 R sL, sR. /* left and right AOA sensor */

13 R aoas. /* AOA used by MCAS */

14 Problem.

15 φpre → [(ctrl;plant)
∗
]φpost

Fig. 10: A Simple Model of Boeing737 Max flawed MCAS.

open challenge in hybrid systems verification [41]. Nonethe-

less, we are able to analyze robustness of safety against faults

or attacks on the angle of attack (AOA) sensor used by the

737-MAX MCAS, even without an analysis of the system’s

overall safety property or the MAX’s flight dynamics.

a) Modeling MCAS: The MCAS caused at least two deadly

crashes in 2019 [42]. MCAS was added to compensate for

instability induced by the 737-MAX’s new engines. Adding

new engines to an existing airframe resulting in an aircraft

whose nose tended to pitch upward, risking stalls. The MCAS

adjusts the plane’s horizontal stabilizer in order to push the

nose down when the aircraft is operating in manual flight at an

elevated angle of attack (AOA). In many 737-MAX planes, the

MCAS is activated by inputs from only one of the airplane’s

two angle of attack sensors. In both 2019 crashes, the MCAS

was triggered repeatedly due to a failed AOA sensor. These

false readings caused the MCAS software to repeatedly push

the plane’s nose down, ultimately interacting with manual

inputs in a way that caused violently parabolic flight paths

terminating in lost altitude and an eventual crash.

Figure 10 shows a simplified model of the original MCAS. The

controller, plane’s flight dynamics, and manual control inputs

are all left abstract: the model focuses only on how values

read by the left and right AOA sensors are used in MCAS.

On each control iteration, one of the two AOA sensors is

randomly chosen (ctrlaoa) and the MCAS is activated using

the value of the chosen sensor (line 9). In this model, we

intentionally omit details about the flight controller, MCAS

system, and flight dynamics. Even with a high-fidelity model

[43], proving correctness for the 737-MAX MCAS requires

advances in state-of-the-art reachability analysis for hybrid

time systems; fortunately, relational reasoning allows us to

nonetheless analyze robustness of the system against faults or

attacks on the AOA sensors.

b) Reasoning for Robustness of Safety: Program ctrlaoa is

not robustly safe if either of the AOA sensors is compromised,

since aoas can have false readings. Therefore, the system is

not robustly safe for attacks on AOA sensors. Boeing’s pro-

posed fix to MCAS includes a requirement that the controller

should compare inputs from both AOA sensors [44], which can



1 Definitions.

2 ...

3 HP accel ≡ ?ψ; busV := A

4 HP brake ≡ busV := −B

5 HP ctrlv ≡ vs:= vp; ds:= dp;

6 if (c) then accel else brake

7 HP ctrlt ≡ temps:= tempp;

8 ( (?temps > T; busV := -1)

9 ∪ (?temps < T; busV := 1)

10 ∪ (?temps = T) )

11 HP ctrlbus ≡ ( (?busV = a; ctrlt; busH:= 1)

12 ∪ busH:= 0 )

13 HP ctrlr ≡ ( (?busH = 0; a:= busV )

14 ∪ (?busH = 1; thermo:= busV ) )

15 HP ctrl ≡ choices; ctrlv; ctrlbus; ctrlr; t:= 0

16 HP plant ≡ d′p = −vp, v
′

p = a, temp′ = thermo, t′ = 1

17 & (vp ≥ 0 ∧ t ≤ ǫ)

18 ProgramVariables.

19 R busV . /* value on the bus */

20 R busH. /* header indicating the type of information */

21 ...

22 Problem.

23 φpre → [(ctrl; plant)
∗
]φpost

Fig. 11: HP model (in canonical form) of an autonomous vehicle
with an internal bus

be modeled by adding the following at the end of ctrlaoa:

(?sL = sR) ∪ (?¬(sL = sR); aoas := 0)

We can prove that the system with this fix is robustly

safe. Let ctrl
′

aoa be ctrlaoa with this simple fix. Then

we know ctrl′aoa ≈{aoas} ATTACKED(ctrl′aoa, {sL})
and ctrl′aoa ≈{aoas} ATTACKED(ctrl′aoa, {sR}). Program

(ctrl;plant)
∗ with ctrl

′

aoa is robustly safe by the decom-

position approach. The proof is included in Appendix B.

C. Case Study: An Autonomous Vehicle with an Internal Bus

Figure 8 shows the self-composition approach with a model

of an autonomous vehicle with interior temperature control.

However, the model doesn’t account for any internal commu-

nication mechanisms. In modern vehicles, Electronic Control

Units (ECUs) oversee a broad range of functionality, including

the drivetrain, lighting, and entertainment. They often commu-

nicate through an internal bus [45].

In this case study, we explore how to use the self-composition

approach to analyze robustness of high-integrity state in a

model of an autonomous vehicle with an internal bus that

communicates both low-integrity messages (sensed tempera-

ture) and a high-integrity messages (sensed velocity). We are

interested in whether the high-integrity state (i.e., velocity) is

robust when the temperature sensor is compromised.

a) Modeling a Vehicle with an Internal Bus: Figure 11

shows a model (in canonical form) of such a system (elided

contents are the same as in the model previously presented

in Figure 8). We model the bus using two variables: a value

variable (busV ), which indicates the current value that sits

on the bus, and a header variable (busH), which indicates

the type of information that sits on the bus: busH = 0 for

acceleration, busH = 1 for temperature. Exactly one message

is communicated via the bus at each control loop iteration.

Acceleration messages have higher priority over thermostat

messages. Program (ctrlv) first sets the bus value to the next

acceleration value. Program ctrlbus then checks if the value

has changed from the existing acceleration value. If not, it

activates temperature control (ctrlt) to set the bus value to

desired thermostat value (line 11). Otherwise, busH is sent

to 0 to indicate that a new acceleration value has arrived

(line 12). Program ctrlr reads a value off the bus and sets

corresponding values based on the header (lines 13–14).

b) Robust High-Integrity State: We are interested in whether

the vehicle’s high-integrity state—vp, the velocity of the

vehicle—is robust when its low-integrity sensor (temps) is

compromised. Specifically, we wonder whether P ≈{vp}

ATTACKED(P, {temps}), where P is the model shown in Fig-

ure 11. We can prove this using the self-composition approach.

Figure 12 shows IC(P, {temps}, ξ), where ξ renames vari-

ables in BV(P ) with a subscript 1 (we elide the descriptions

of program variables introduced in Figure 11). By choosing the

equivalence formula as vp = vp1 ∧ dp = dp1 ∧ a = a1 (line 3),

we are able to prove the desired property at line 40. Proving

this property means for this vehicle, its high-integrity variable

vp, dp, and a are robust when its temperature sensor is

compromised. We have proven the model in Figure 12 using

KeYmaera X.

Note that the decomposition approach and self-composition

approach may work well in different settings. The decompo-

sition approach is easy to apply and works well when the

sensor attack affects a small portion of the system, as in

our first two case studies; by constrast, the self-composition

approach can handle cases where the effect of the attack may

be complicated—as in our third case study—but requires more

effort to use. It is possible to combine the two techniques to

prove robustness properties of complicated cases. For example,

if we can identify that only a single component of a large

system is affected by an attack, the self-composition approach

can be used to prove robustness of this component, while the

decomposition approach delivers the robustness proof of the

whole system.

VII. RELATED WORK

Formal analysis of sensor attacks Lanotte et al. [16],

[17] propose formal approaches to model and analyze sensor

attacks with a process calculus. The threat model allows

attacks that manipulate sensor readings or control commands

to compromise state. Their model of physics is discrete and it

focuses on timing aspects of attacks on sensors and actuators.

In comparison, we analyze relational properties in systems

whose dynamics are modeled with differential equations and

we introduce techniques to establish proofs of these properties.

Bernardeschi et al. [46] introduce a framework to analyze

the effects of attacks on sensors and actuators. Controllers

of systems are specified using the formalism PVS [47]. The

physical parts are assumed to be described by other modeling

tools. Their threat model is similar to ours: the effect of an

attack is a set of assignments to the variables defined in the



1 Definitions.

2 ...

3 B eqη ≡ vp = vp1 ∧ dp = dp1 ∧ a = a1

4 B ψ ≡ 2Bds > v2s + (A+B)(Aǫ2 + 2vsǫ)

5 HP choices ≡ c:= ∗

6 HP accel ≡ ?ψ; busV := A

7 HP brake ≡ busV := −B

8 HP ctrlv ≡ vs:= vp; ds:= dp;

9 if (c) then accel else brake

10 HP ctrlt ≡ temps:= tempp;

11 ( (?temps > T; busV := -1)

12 ∪ (?temps < T; busV := 1)

13 ∪ (?temps = T) )

14 HP ctrlbus ≡ ( (?busV = a; ctrlt; busH:= 1)

15 ∪ busH:= 0 )

16 HP ctrlr ≡ ( (?busH = 0; a:= busV )

17 ∪ (?busH = 1; thermo:= busV ) )

18 HP ctrl ≡ ctrlv; ctrlbus; ctrlr; t:= 0

19 B ψ1 ≡ 2Bds1 > v2s1
+ (A+B)(Aǫ2 + 2vs1ǫ)

20 HP choices1 ≡ c1:= c

21 HP accel1 ≡ ?ψ1; busV1 := A

22 HP brake1 ≡ busV1 := −B

23 HP ctrlv1 ≡ vs1:= vp1; ds1:= dp1;

24 if (c1) then accel1 else brake1

25 HP ctrlt1 ≡ temps1:= *;

26 ( (?temps1 > T; busV1:= -1)

27 ∪ (?temps1 < T; busV1:= 1)

28 ∪ (?temps1 = T) )

29 HP ctrlbus1
≡ ( (?busV1 = a1; ctrlt1; busH1:= 1)

30 ∪ busH1:= 0 )

31 HP ctrlr1 ≡ ( (?busH1 = 0; a1:= busV1)

32 ∪ (?busH1 = 1; thermo1:= busV1) )

33 HP ctrl1 ≡ ctrlv1; ctrlbus1
; ctrlr1; t1:= 0

34 HP ctrl
′ ≡ choices; ctrl; choices1; ctrl1

35 HP plant
′ ≡ d′p = −vp, v

′

p = a, temp′p = thermo, t′ = 1

36 d′p1
= −vp1 , v

′

p1
= a1, temp

′

p1
= thermo1, t

′

1 = 1

37 & (vp ≥ 0 ∧ vp1 ≥ 0 ∧ t ≤ ǫ ∧ t1 ≤ ǫ)

38 ...

39 Problem.

40 eqη → [(ctrl
′
; plant

′
)
∗
]eqη

Fig. 12: Interleaved composition of the hybrid program (in canonical
form) modeling an autonomous vehicle with an internal bus shown
in Figure 11

controller. Simulation is used to analyze effects of attacks. By

contrast, we focus on formal analysis for the whole system and

propose concrete proof techniques for relational properties.

Analyzing relational properties of cyber-physical systems

Akella et al. [48] use trace-based analysis and apply model

checking to verify information-flow properties for discrete

models based on process algebra. Prabhakar et al. [49] in-

troduce a type system that enforces noninterference for a

hybrid system modeled as a programming language. Nguyen et

al. [50] propose a static analysis that checks noninterference

for hybrid automata. Liu et al. [51] introduce an integrated

architecture to provide provable security and safety assurance

for cyber-physical systems. They focus on integrated co-

development: language-based information-flow control using

Jif [52] and a verified hardware platform for information-flow

control. Their focus is not on sensor attacks.

Bohrer et al. [53] verify nondeducibility in hybrid programs,

a noninterference-like guarantee. To do this, they introduce a

very expressive modal logic that can explicitly express that

formulas hold in a given world (i.e., state). By contrast, we

use an existing logic (that has good tool support) to express

and reason about a specific threat model.

Closely related to our work is that of Kolčák et al. [54] which

introduces a relational extension of dL. A key contribution

of their work is a new proof rule to combine two dynamics,

allowing existing inference rules of dL to be applied in a

relational setting. Similar to their work, our self-composition

technique expresses relational properties by leveraging a com-

position of two programs whose variables are disjoint. Unlike

their work, our self-composition technique aims to prove

relational properties that require some of the nondeterministic

choices to be resolved in the same way in both executions.

For instance, our example shown in Figure 8 is not directly

expressible in their setting. We believe that the work by Kolčák

et al. [54] is orthogonal to ours, and the two can be combined

to express and prove more complicated relational properties.

Security analysis for CPSs Much work have focused on the

security of cyber-physical systems (CPS), but primarily from a

systems security perspective rather than using formal methods.

Various attacks (and mitigations of these attacks) have been

identified, including false data injection [55], replay attacks

[56], relay attacks [57], spying [58], and hijacking [59]. Our

work focuses on formal methods for CPS security, ruling out

entire classes of attacks.

Mitigating sensor attacks Some work propose attack-resilient

state estimation to defend against adversarial sensor attacks

in cyber-physical systems [60], [61]. These methods model

systems with bounded sensor noises as an optimization prob-

lem to locate potentially malicious sensors. Our work has a

different formal model of sensor attacks and focuses on formal

guarantees of robustness of systems under sensor attacks.

VIII. CONCLUSION

We have introduced a formal framework for modeling and

analyzing sensor attacks on cyber-physical systems. We for-

malize two relational properties that relate executions in the

original system and a system where some sensors have been

compromised. The relational properties express the robustness

of safety properties and the robustness of high-integrity state.

Both relational properties can be expressed in terms of an

equivalence relation between programs, and we presented two

approaches to reason about this equivalence relation, one based

on decomposition and the other based on using a single

program to represent executions of the original system and

the attacked system. We have shown both of these approaches

sound, and used them on three case studies of non-trivial

cyber-physical systems.

This work focuses on sensors, but our approach can also be

used to model and analyze attacks on actuators.
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[54] J. Kolčák, J. Dubut, I. Hasuo, S.-y. Katsumata, D. Sprunger, and
A. Yamada, “Relational differential dynamic logic,” in International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer, 2020, pp. 191–208.

[55] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in IEEE

Symposium on Security and Privacy, 2010, pp. 447–462.

[56] C. Li, A. Raghunathan, and N. K. Jha, “Hijacking an insulin pump:
Security attacks and defenses for a diabetes therapy system,” in IEEE

International Conference on e-Health Networking, Applications and
Services, 2011, pp. 150–156.

[57] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive
keyless entry and start systems in modern cars,” in Network and

Distributed System Security Symposium, 2011.

[58] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Com-
prehensive experimental analyses of automotive attack surfaces.” in
USENIX Security Symposium, 2011, pp. 447–462.

[59] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security

& Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[60] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and
G. J. Pappas, “Robustness of attack-resilient state estimators,” in 2014
ACM/IEEE International Conference on Cyber-Physical Systems, 2014,
pp. 163–174.

[61] M. Pajic, I. Lee, and G. J. Pappas, “Attack-resilient state estimation for
noisy dynamical systems,” IEEE Transactions on Control of Network

Systems, vol. 4, no. 1, pp. 82–92, 2016.

APPENDIX A

DEFINITIONS

We present the formal definitions of bound variables, free vari-

ables, and variable sets here. These definitions are exactly as

given in [22], [26], and included for the reader’s convenience.

Definition 11 (Bound variables). The set BV(φ) of bound

variables of dL formula φ is defined inductively as:

BV(θ1 ∼ θ2) = ∅ ∼∈ {<,≤,=, >,≥}

BV(¬φ) = BV(φ)

BV(φ ∨ ψ) = BV(φ ∧ ψ) = BV(φ) ∪ BV(ψ)

BV(φ→ ψ) = BV(φ) ∪ BV(ψ)

BV(∀x. φ) = BV(∃x. φ) = {x} ∪ BV(φ)

BV([α]φ) = BV(α) ∪ BV(φ)

The set BV(P ) of bound variables of hybrid program P , i.e.,

those may potentially be written to, is defined inductively as:

BV(x := θ) = BV(x := ∗) = {x}

BV(?φ) = ∅

BV(x′ = θ&φ) = {x, x′}

BV(α;β) = BV(α ∪ β) = BV(α) ∪ BV(β)

BV(α∗) = BV(α)

Definition 12 (Must-bound variables). The set MBV(P ) ⊆
BV(P ) of most bound variables of hybrid program P , i.e.,

all those that must be written to on all paths of P , is defined

inductively as:

MBV(x := θ) = MBV(x := ∗) = {x}

MBV(?φ) = ∅

MBV(x′ = θ&φ) = {x, x′}

MBV(α ∪ β) = MBV(α) ∩ MBV(β)

MBV(α;β) = MBV(α) ∪ MBV(β)

MBV(α∗) = ∅

Definition 13 (Free variables). The set FV(θ) of variables of

term θ is defined inductively as:

FV(x) = {x}

FV(c) = ∅

FV(θ1 ⊕ θ2) = FV(θ1) ∪ FV(θ2) ⊕ ∈ {+,×}

The set FV(φ) of free variables of dL formula φ is defined

inductively as:

FV(θ1 ∼ θ2) = FV(θ1) ∪ FV(θ2)

FV(¬φ) = FV(φ)

FV(φ ∨ ψ) = FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ)

FV(φ→ ψ) = FV(φ) ∪ FV(ψ)

FV(∀x. φ) = FV(∃x. φ) = FV(φ) \ {x}

FV([α]φ) = FV(α) ∪ (FV(φ) \ MBV(α))

The set FV(P ) of bound variables of hybrid program P is

defined inductively as:

FV(x := θ) = FV(θ)

FV(x := ∗) = ∅

FV(?φ) = FV(φ)

FV(x′ = θ&φ) = {x} ∪ FV(θ) ∪ FV(φ)

FV(α ∪ β) = FV(α) ∪ FV(β)

FV(α;β) = FV(α) ∪ (FV(β) \ MBV(α))

FV(α∗) = FV(α)

Definition 14 (Variable sets). The set VAR(P ), variables of

hybrid program P is BV(P ) ∪ FV(P ). The set VAR(φ),
variables of dL formula φ is BV(φ) ∪ FV(φ).

APPENDIX B

PROOFS

Proof of Theorem 1. P ≈FV(φpre∧φpost) ATTACKED(P, SA)
means for any execution σq of ATTACKED(P, SA), there exists

an execution σp of P that agrees on FV(φpre ∧ φpost) at

the starting state and the end of every control iteration. That

means if the starting state of σq satisfies φpre, the starting

state of σp satisfies φpre (Lemma 3 from [26]). Meanwhile,

since φpre → [P ]φpost, the last state of σp satisfies φpost. And

last states of σq and σp agree on free variables used in φpost,

so the last state of σq satisfies φpost (Lemma 3 from [26]).

φpre → [ATTACKED(P, SA)]φpost holds. �



Proof of Property 1 to 3 of Theorem 2. By the definition of

H-equivalence. �

Lemma 1. H-equivalence of states is transitive, reflective, and

symmetric.

Proof. By the definition of ≈H. �

Lemma 2. For program P , state ω, ω′, ν, and set H such

that (ω, ν) ∈ JP K, ω ≈H ω′, and FV(P ) ⊆ H, then there

exists ν′ such that (ω′, ν′) ∈ JP K and ν ≈H ν′.

Proof. By the definition of ≈H and lemma 4 from [26]. �

Proof of Property 4 of Theorem 2. We prove that for

any execution of A;C, there exists an execution of B;D
that agrees with it on H. The other direction can be proven

similarly. For any execution σac of A;C, let ωacf and ωacl
be its first and last state respectively. Then there exists a state

ωacm such that (ωacf , ωacm) ∈ JAK and (ωacm , ωacl) ∈ JCK.

Since A ≈H B, there exist state ωbf , ωbl such that (ωbf , ωbl)
∈ JBK, ωbf ≈H ωacf , and ωbl ≈H ωacm . Likewise, since

C ≈H D, there exists state ωdf , ωdl such that (ωdf , ωdl)
∈ JDK, ωdf ≈H ωacm , and ωdl ≈H ωacl . By transitivity

(Lemma 1), we get ωbl ≈H ωdf . Since FV(D) ⊆ H, by

Lemma 2, there exist state ωd′
l

such that (ωbl , ωd′l) ∈ JDK
and ωdl ≈H ωd′

l
. Since ωacl ≈H ωd′

l
and ωacf ≈H ωbf (by

transitivity), for the execution of A;C from ωacf to ωacl , we

have (ωbf , ωd′l) ∈ JB;DK, ωacf ≈H ωbf , and ωacl ≈H ωd′
l
.

A;C ≈H B;D holds. �

Proof of Property 5 of Theorem 2. By induction on the

number of iterations of α∗ and β∗. Base case is trivial. For

the induction case, assume αk ≈H βk is true, we can prove

αk;α ≈H βk;β using Property 4 by letting A be αk, B be

βk, C be α, and D be β. Thus, α∗ ≈H β∗ holds. �

Proof of robust safety of the ABS model. Let P be the hybrid

program modeling ABS with duplicated sensors. Assume

sensor ω1 is compromised. Let A be the voting program, B

be ATTACKED(A, {ω1}), and C be program P with voting

excluded (i.e., P = (A;C)∗ and ATTACKED(P, {ω1}) =
(B;C)∗). Here, FV(A) = FV(B) = {ωp}, FV(A;C) =
FV(B;C), and FV(C) = {ωs} ∪ FV(A;C).

By the definition of ≈H, A ≈{ωs,ωp} B holds, which means

A ≈FV(C) B (Property 3)

With C ≈FV(C) C (Property 1), we get

(A;C) ≈FV(C) (B;C) (Property 4)

which leads to

(A;C)∗ ≈FV(C) (B;C)∗ (Property 5)

Property 2 also applies to programs with loop, and {ωp, vp}
⊆ FV(C), thus

(A;C)∗ ≈{ωp,vp} (B;C)∗ (Property 2)

Since FV(φpre ∧ φpost) = {ωp, vp}, we have

ROBUST(P, φpre, φpost, {ωs1}) (Theorem 1).

Similarly, we can prove ROBUST(P, φpre, φpost, {ωs2}) and

ROBUST(P, φpre, φpost, {ωs3}). �

Proof of robust safety of Boeing 737-MAX model. Let A

be program ctrl
′

aoa, B be program ATTACKED(A, {sL}), C
be program MCAS(aoa); plant in Figure 10. Here, FV(A)
= FV(B) = {aoap}, let fv be the set of free variables of

program A;C, then FV(B;C)=fv, and FV(C) would be

{aoas} ∪ fv. We can prove ROBUST(A;C, φpre, φpost, {sL})
with the following steps:

By definition of ≈H, we prove A ≈{aoas,aoap} B, which

means

A ≈{aoas,aoap}∪fv B (Property 3)

With C ≈{aoas,aoap}∪fv C (Property 1), we know

A;C ≈{aoas,aoap}∪fv B;C (Property 4)

Since FV(A;C)∪ FV(B;C) ⊆ {aoas, aoap} ∪ fv, we know

(A;C)∗ ≈{aoas,aoap}∪fv (B;C)∗ (Property 5)

Property 2 applies to programs with loop as well, so

(A;C)∗ ≈fv (B;C)∗ (Property 2)

Since formula φpre and φpost typically refer to free variables in

fv, we get ROBUST(P, φpre, φpost, {sL}) holds. (Theorem 1).

Similarly, we can prove ROBUST(P, φpre, φpost, {sR}). �

APPENDIX C

LIMITATIONS OF THE SELF-COMPOSITION APPROACH

One limitation of our self-composition approach is that it

applies only for hybrid programs that have total semantics

for all low-integrity inputs. It means if a program has a

valid execution on an input state ω (i.e., exist state ν such

that (ω, ν) ∈ JP K), then for any state ω′ that differs with

ω only in low-integrity inputs, there exists ν′ that (ω, ν) ∈
JATTACKED(P, SA)K.

A program may have partial (not total) semantics on low-

integrity inputs for two reasons: (1) some low-integrity inputs

fail test conditions in all execution paths, for example, if a

is a low-integrity variable, then ?a > 0 is a program whose

semantics are partial on low-integrity inputs; (2) the program’s

evolution constraint depends on low-integrity inputs. For ex-

ample, if a is a low-integrity variable, (x′ = θ&a > 0 ) is a

program whose semantics are partial on low-integrity inputs.

Fortunately, there is a relatively simple way to check that

hybrid programs meet this requirement. First, given a set

of low-integrity sensor variables, a straightforward program

analysis can identify all variables that might depend on a low-

integrity sensor variables; call these the low-integrity variables.

Second, check that all evolution constraints do not include

any low-integrity variables. Third, check that any test ?φi that

includes a low-integrity variable occurs as part of a construct

?φ1;α1 ∪ · · · ∪?φn;αn such that φ1 ∨ · · · ∨ φn is valid (i.e.,

the tests are exhaustive and so at least one of the branches of

the nondeterministic choice will be true).

Well-designed hybrid program models should have total se-

mantics on low-integrity inputs, except in specific situations

that rarely depend on low-integrity sensor variables. Models



that do not have total semantics on low-integrity inputs typ-

ically do not correspond to actually implementable control

strategies, and are therefore only vacuously safe.

APPENDIX D

SOUNDNESS PROOF OF THE SELF-COMPOSITION

APPROACH

We use trace semantics of hybrid programs [33], [34] to prove

Theorem 3. The trace semantics of hybrid programs assigns

to each program α a set of traces τ(α). A state is a map from

the set of variables to real numbers. The set of all variables

is denoted V. The set of all states is denoted STA. A separate

state Λ (not in STA) denoting a failure of the system.

A trace is a (non-empty) finite or infinite sequence σ =
(σ0, σ1, ...) of trace functions σi : [0, ri] → STA with duration

ri ∈ R. A position of σ is a pair (i, ι) with i ∈ N and ι in

the interval [0, ri]; the state of σ at (i, ι) is σιi . For a state

ω ∈ STA, ω̂: 0 7→ ω is a point flow at ω with duration 0. A

trace terminates if it is a finite sequence σ = (σ0, σ1, ...σn)
and σn 6= Λ. In that case, the last state is denoted as σn(rn).
The first state of σ, denoted FST σ, is σ0(0). The set of all

traces is TRA.

We denote by ω[x 7→ r] the valuation assigning variable x to

d ∈ R and matching with ω on all other variables.

The trace semantics τ(α) of a hybrid program α is defined

inductively [34]:

• τ(x := θ) = {(ω̂, ν̂) | ν = ω[x 7→ ωJθK]};

• τ(x′ = θ&φ) = {(σ) : σ is a state flow of order 1

defined on [0, r] or [0, +∞] solution of x′ = θ, and for

all t in its domain, σ(t) |= φ} ∪ {(ω̂, Λ̂) : ω 6|= φ};

• τ(?φ) = {(ω̂) | ω |= φ} ∪ {(ω̂, Λ̂) : ω 6|= φ};

• τ(α ∪ β) = τ(α) ∪ τ(β);
• τ(α;β) = {σ ◦ ρ : σ ∈ τ(α), ρ ∈ τ(β) when

σ ◦ ρ is defined}; where the composition σ ◦ ρ of σ =
(σ0, ..., σn) and ρ = (ρ0, ..., ρm) is

– σ ◦ ρ = (σ0, ..., σn, ρ0, ..., ρm) if σ terminates and

LST σ = FST ρ;

– σ if σ does not terminate;

– undefined otherwise;

• τ(α∗) = ∪n∈Nτ(α
n), where α0 is defined as ?true, α1

is defined as α and αn+1 is defined as αn;α for n ≥ 1;

• τ(x := ∗) = {(ω̂, ν̂) | ν = ω[x 7→ d]} where d is some

real value.

Notice that the trace semantic for τ(x := ∗) is not defined

in [33], [34]. We add it to complete the definition of trace

semantic needed in this work.

We refer to finite traces that end with failure state Λ as failure

traces, and other traces as normal traces. We denote τ⊲(P )
the set of normal traces of a program P :

τ⊲(P ) = {σ ∈ τ(P ) | LST σ 6= Λ ∨ σ does not terminate}

Now, we formalize the H-equivalence of states, trace func-

tions, traces, and programs. Compare with Definition 5, these

SINGLE.FUNCTION

σa0
∼∼∼ζ σ

b
0

(σa0 )
∼∼∼ζ (σ

b
0)

TRACE-PLANT

m ≥ 1 n ≥ 1
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b
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a
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b
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dom(σap ) 6= [0, 0] ∨ p = m
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b
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a
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b
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Fig. 13: Definition of H-equivalence of traces

formal definitions are more general (can be applied on pro-

grams with different variable sets) and uses a mapping function

between variables in two states (instead of using just a set).

Definition 15 (H-equivalence of states). We define ωi ∼∼∼ζ ωj ,
for states ωi and ωj that agree on corresponding variables

that are related by function ζ, i.e.,

∀x ∈ dom(ζ), ωi(x) = ωj(ζ(x))

Here the domain of ζ corresponds to the H in Definition 5.

And ζ is often a subset of the renaming function of the

program of concern.

Definition 16 (H-equivalence of trace functions). We define

σi ∼∼∼ζ σj , for trace functions σi and σj that have the same

domain and H-equivalent states at all domain values:

dom(σi) = dom(σj) and ∀p ∈ dom(σi), σi(p) ∼∼∼ζ σj(p)

Definition 17 (H-equivalence of traces). We define σa ∼∼∼ζ σ
b,

for trace σa and σb that agree on (1) the first state (2) trace

functions whose domains are not [0, 0], and (3) the last state

if both are finite traces. Figure 13 shows the formal definition.

We write ω1
∼∼∼idH ω2 to mean that ω1 and ω2 are

H-equivalence with respect to an identity function defined

on set H and undefined otherwise (i.e., idH). We write

σa ∼∼∼idH σb to indicate traces σa and σb are equivalent on idH.

We write σa ∼∼∼id σ
b to mean that σa and σb are equivalent

with all variables, i.e., the two traces use the same set of

variables and they are H-equivalent.

Definition 18 (H-equivalence of two programs by traces). For

two hybrid programs P1 and P2 of the canonical form, a

function ζ maps variables in P1 to variables in P2, P1
∼∼∼ζ

P2 is defined as follows:

∀σa ∈ τ⊲(P1), ∃σb ∈ τ⊲(P2) such that σa ∼∼∼ζ σ
b



To help express the agreement between executions composed

in a self-composition, we introduce the notion of projections

on states, trace functions, and traces.

Definition 19 (Projection). For state ω and a set V of

variables such that V ⊆ VAR(ω), the V projection of state ω,

denoted ω ⇓ V , is a map {x 7→ ω(x)} for all x ∈ V .

For a trace function σi: [0, ri] → STA and a set V of variables

such that V ⊆ VAR(σi), the V projection of σi, denoted σi ⇓
V , is {ι 7→ (σi(x) ⇓ V )} for all ι ∈ dom(σi).

For a trace σ = (σ0, . . . , σn) and a set V of variables such

that V ⊆ VAR(σ), the V projection of σ, denoted σ ⇓ V , is

computed by pointwise projecting every trace function of σ:

σ ⇓ V = (σ0 ⇓ V, . . . , σn ⇓ V )

For a program P , we write σ ⇓ P , to mean σ ⇓ VAR(P ).
Notation ⇓ P also applies to states and trace functions.

The soundness theorem (Theorem 3) has a list of promises: a

program P and Pc (P in canonical form), a set SA of variables,

a set η of variables such that SA ⊆ BV(P ), η ⊆ BV(P ),
and SA ∩ η = ∅. We assume but elide these promises in the

following definitions and lemmas.

Definition 20 (Self-composition preserves equivalence for-

mula). The desired property of a self-composition:

eqξη → [IC(P, SA, ξ)]eq
ξ
η

is formalized as follows:

∀σ ∈ τ⊲(IC(P, SA, ξ)) such that

FST (σ ⇓ P ) ∼∼∼ζ FST (σ ⇓ ξ(P )),

σ ⇓ P ∼∼∼ζ σ ⇓ ξ(P )

Where ζ is {(x, ξ(x)) | x ∈ η}.

Assumption 1 (A program has total semantics on low-integrity

inputs (formalized)).

∀ω1, ω2 : STA such that ω1 ≈η ω2,

∃σa ∈ τ⊲(P ) such that FST σa = ω1

↔ ∃σb ∈ τ⊲(ATTACKED(P, SA)) such that FST σb = ω2

Lemma 3 (Renaming preserves trace). For a hybrid program

P and a renaming function ξ on P :

∀σ ∈ τ⊲(P ), ξ(σ) ∈ τ⊲(ξ(P ))

Where ξ(σ) is σ with variables renamed according to ξ.

Proof. By induction on P . �

Lemma 4 (Renaming preserves trace existence).

∀ω1, ω2 : STA such that ω1 ≈η ω2,

∀σ ∈ τ⊲(P ) such that FST σ = ω1,

∃σ′ ∈ τ⊲(ξ(ATTACKED(P, SA))) such that FST σ′ = ξ(ω2)

Proof. By assumption 1, a trace of ATTACKED(P, SA) exists

with starting state ω2. By lemma 3, we know ξ(σ′) is a normal

trace of ξ(ATTACKED(P, SA)). �

Lemma 5. Trace preserves after adding disjoint variable sets.

∀ω1 ω2 : STA such that

VAR(ω1) = VAR(P ) and VAR(ω1) ∩ VAR(ω2) = ∅

∀σ ∈ τ⊲(P ) such that FST σ = ω1,

∃σ′ ∈ τ⊲(P ) such that

FST σ′ = ω1 ⊕ ω2 and σ′ ⇓ P = σ

Where ⊕ means the join of two non-overlapping states.

Proof. By induction on P . �

Lemma 6 (Projection preserves trace). For program P ,

∀σ ∈ τ⊲(P ), σ ⇓ P ∈ τ⊲(P ) and σ ⇓ P ∼∼∼idVAR(P )
σ

Proof. By the definition of trace semantics and projection. �

Lemma 7 (Projection not affected by programs with disjoint

variables). For program P1 and P2 such that BV(P1) ∩
BV(P2) = ∅,

∀σ ∈ τ⊲(P1), FST σ ⇓ P2 = LST σ ⇓ P2

Proof. By induction on P1 and definition of ⇓. �

Lemma 8 (Composition preserves trace existence). For pro-

gram α = (ctrl;x′ = θ&φ),

∀ω1, ω2 : STA such that ω1
∼∼∼ζ ω2,

VAR(ω1) = VAR(α), and VAR(ω2) = VAR(ξ(α)),

∀σ ∈ τ⊲(α) such that FST σ = ω1,

∃σ′ ∈ τ⊲(ctrl; ξ(ATTACKED(ctrl, SA)); (x
′ = θ, ξ(x′ = θ))

&(φ ∧ ξ(φ))) such that

σ′ ⇓ α ∼∼∼id σ
a and (FST σ′) ⇓ ξ(α) = ω2

Where ζ is {(x, ξ(x)) | x ∈ η}.

Proof. Let σa = (σa0 ...σ
a
m), then (σa0 ...σ

a
m−1) is a trace

of ctrl, and σm : [0, r1] 7→ STA is a trace function for

x′ = θ&φ. According to Assumption 1, there exists σb ∈
τ⊲(ξ(ATTACKED(α, SA))). We can then prove the part of

ctrl; ξ(ATTACKED(ctrl, SA)) by lemma 5, 7 and the definition

of ∼∼∼. For the plant part, we know (by Assumption 1) low-

integrity values cannot affect evolution constraints, meaning

input states ω1 and ω2 should be able to last the same

duration of evolution. Thus, for any duration r1 that trace

σa has, the duration of the other trace σb can match it, i.e.,

r1 = r2. Thus there exist a trace function [0, r1] 7→ STA:

x 7→ σ1(x) ⊕ (σ2(x) ⇓ BV(ξ(α))) for the composed dy-

namic (x′ = θ, ξ(x′ = θ))&(φ ∧ ξ(φ)), whose α projection

is indistinguishable from σa. Combined with the result for

ctrl; ξ(ATTACKED(ctrl, SA)), this lemma is proven. �

Lemma 9 (Assigning the same value to connected variables

preserves equivalence).

∀ω1, ω2 : STA such that ω1
∼∼∼ζ ω2,

∀x : V, d : R such that x ∈ dom(ζ),

ω1[x 7→ d] ∼∼∼ζ ω2[ξ(x) 7→ d]



Lemma 10 (Assigning arbitrary values to non-connected

variables preserves equivalence).

∀ω1, ω2 : STA such that ω1
∼∼∼ζ ω2,

∀x : V, d1, d2 : R such that x 6∈ dom(ζ)

ω1[x 7→ d1] ∼∼∼ζ ω2[ξ(x) 7→ d2]

Lemma 9 and 10 can be proven by the definition of ∼∼∼ζ .

Lemma 11 (Choice part of composition preserve equivalence).

For program choices that consists of non-deterministic assign-

ments of choice variables,

∀ω1, ω2 : STA such that ω1
∼∼∼ζ ω2,

∀σ ∈ τ⊲(choices) such that FST σ = ω1,

∃σ′ ∈ τ⊲(choices; SUB(choices, ξ)) such that

σ′ ⇓ choices ∼∼∼id σ and

LST σ′ ⇓ choices ∼∼∼ζ LST σ′ ⇓ ξ(choices)

Proof. Let σ = (σ0 . . . σp) be the trace of program choices,

then there exists a trace σb for ξ(choices) with the same

length as σ, i.e., σb = (σb0 . . . σ
b
p). We can then get a trace for

program SUB(choices, ξ) by altering corresponding variables

in the state. Then by lemma 9 and 10 and induction on the

number of assignments in choices. �

Lemma 12 (Completeness of a single iteration). Let program

P = α∗
p and IC(P, SA, ξ) = α∗

c ,

∀ω1, ω2 : STA such that ω1
∼∼∼ζ ω2,

VAR(ω1) = VAR(P ), and VAR(ω2) = VAR(ξ(P )),

∀σ ∈ τ⊲(αp) such that FST σ = ω1,

∃σ′ ∈ τ⊲(αc) such that σ′ ⇓ P ∼∼∼id σ and

FST σ′ ⇓ ξ(P ) = ω2

Proof. By Lemma 8 and 11. �

Lemma 13 (Projections of a sequence).

∀σ ∈ τ⊲(α;β) such that BV(α) ∩ BV(β) = ∅,

∃σa ∈ τ⊲(α), σ
b ∈ τ⊲(β) such that

σ ⇓ α ∼∼∼id σ
a and σ ⇓ β ∼∼∼id σ

b

Proof. By induction on α, β, and definition of projection. �

Lemma 14 (Soundness of the trace for composed

plant). For program α = (ctrl;x′ = θ&φ) and β =

(ξ(ATTACKED(ctrl, SA)); ξ(x
′ = θ)&ξ(φ)),

∀σ ∈ τ⊲(ctrl; ξ(ATTACKED(ctrl, SA));

(x′ = θ, ξ(x′ = θ)&(φ ∧ ξ(φ)))

∃σa ∈ τ⊲(α), σ
b ∈ τ⊲(β) such that

σ ⇓ α ∼∼∼id σ
a and σ ⇓ β ∼∼∼id σ

b

Proof. By definition of trace semantics and Lemma 13. �

Lemma 15 (Soundness of single iteration). Let program P =

α∗
p, ξ(ATTACKED(P, SA)) = α∗

q , and IC(P, SA, ξ) = α∗
c ,

∀σ ∈ τ⊲(αc),

∃σa ∈ τ⊲(αp), σ
b ∈ τ⊲(αq) such that

(σ ⇓ αp) ∼∼∼id σ
a and (σ ⇓ αq) ∼∼∼id σ

b

Proof. By Lemma 13 and 14. �

Lemma 16 (Renaming preserve equivalence).

P ∼∼∼ζ ξ(ATTACKED(P, SA)) ↔ P ≈dom(ζ) ATTACKED(P, SA)

Proof. By induction on the variables in program P [24]. �

Proof of Theorem 3. By Definition 20, Lemma 6, 12, 15,

16, and induction on the number of iterations, we get P ≈η
ATTACKED(P, SA). Since H ⊆ η, P ≈H ATTACKED(P, SA)
(Property 2). �
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