
 1

Synthesis of Logic Interpretations

Jian Xiang, John Knight, Kevin Sullivan

Department of Computer Science

University of Virginia

Charlottesville, VA USA
{Jian,Knight,Sullivan}@cs.virginia.edu

Abstract— Logic interpretations define the relationships

between real-world entities and their logic representations. We

introduce an explicit structure for documenting interpretations

based on real-world types. As we have demonstrated previously,

the benefits of using real-world types can be considerable, but the

effort required might deter programmers. In this paper, we

introduce a semi-automated mechanism that: (a) synthesizes

candidate real-world types, (b) infers real-world type bindings for

program variables, and (c) synthesizes candidate type rules from

verified or trusted programs. We illustrate the synthesis approach

using an open-source project for which we have previously

developed a complete real-world type system.

Keywords— Logic interpretation, real-world types, software

reliability

I. INTRODUCTION

The notations that are used for defining software are formal
languages. High-level languages, assembly languages and
machine languages are all formal and all have the property that,
as formal languages, they have no inherent real-world meaning.
For any statement in a formal language to be anything other than
a purely syntactic entity, an interpretation has to be added to the
logic. The interpretation defines the intended meaning in the real
world of elements of the logic. In doing so, the interpretation
exposes the logic to constraints and invariants that derive from
the real world, such as the laws of physics. To be valid, the logic
must conform to these constraints and invariants, and so they
provide a rich opportunity for error checking of the software.

In practice, the interpretation of a software system is always
present, but usually documented in an ad hoc, informal and
sometimes implicit manner using casual techniques such as
“descriptive” comments, “meaningful” identifiers, and design
documents. We note that the execution of software is unchanged
by the replacement of identifiers with random strings, and the
removal of comments and design documents. The logic is
unaffected by these changes, but human understanding of what
the logic does is mostly destroyed.

The importance of interpretation can be seen when one notes
that many software systems, especially cyber-physical systems,
interact with the real world. Such systems are often safety
critical, and assurance of their correct operation depends on the
interaction being complete and correct. Unless the interaction is
documented carefully, doubt in the correctness of the effects of
such systems is inevitable.

In previous work, we showed that an explicit interpretation
provides a new capability for detecting software faults, and we

demonstrated its performance [21]. An interpretation allows
automated detection of faults that result from misuse of real-
world entities or violate real-world constraints. In case studies,
analyses revealed both unrecognized faults and faults that had
been reported as bugs in real systems.

In this paper we make two contributions: (a) we introduce a
preliminary explicit content and structure for an interpretation,
and (b) we introduce a semi-automatic synthesis system for
creating draft interpretations from available system assets.
Making the interpretation explicit eliminates the ad hoc and
informal form that is used currently. The effort in constructing
an interpretation might be considerable, and so semi-automatic
synthesis is designed to assist engineers and reduce that effort.

The explicit documentation of the interpretation of logic
provides three advantages: (a) it informs the software design of
the entities that the software will affect enabling better design
choices, (b) it documents essential reference materials in a
centralized and well-defined form allowing rigorous
examination of the logic for correctness and completeness by
human inspection, and (c) the real-world constraints and
invariants that the interpretation exposes can be checked
providing a new mechanism for detecting software faults.

To investigate the utility of the synthesis system concepts
presented in this paper, we have developed a prototype that we
applied to Java. The prototype analyzes Java source programs
based on naming conventions, and presents the synthesized
candidate artifacts to the programmer ranked by preliminary
suggestions. We conducted a case study on a moderate-sized
project for which separately we have developed a complete real-
world type system. The results show that most of the real-world
types needed in the project can be located in the synthesized
candidates as can the type rules and bindings.

In the next Section, we summarize the interpretation concept
and introduce a structure for interpretations based on real-world
types. In Sections III through VII we discuss the concept of real-
world types and the synthesis of interpretations, real-world types,
real-world type bindings, and real-world type rules. In Section
VIII we present a case study assessment of the synthesis
mechanism, and in Section IX we review related work. Finally,
in Section X we present our conclusions.

II. CONCEPT OF INTERPRETATION

An interpretation defines the real-world meaning of an
element of logic. For example, an integer variable in an avionics
program might be used to represent the actual altitude of an

 2

aircraft. Within the logic of the software, the variable is merely
an integer. The role of the interpretation is to reveal everything
about the actual altitude of the aircraft.

Figure 1 illustrates this idea. The system design process
starts with a problem to be solved in the real world and develops
a concrete solution in logic. The interpretation provides the real-
world details of an entity in the logic.

Fig. 1. Interpretation as an abstraction from concrete to abstract.

Without an explicit interpretation, important characteristics
of real-world entities, such as units and dimensions, and
associated real-world constraints, such as not mixing units, are
stated and enforced either in ad-hoc ways or not at all. In
addition, crucial relationships between logic representations and
real-world entities, such as accuracy of sensed values, remain
under specified. The result is that programs tend to treat
representations in logic as if they were isomorphic to the real-
world entities. This practice leads to the introduction of faults
into systems due to unrecognized discrepancies, and executions
end up violating rules inherited from the real world [15].

As an example, consider again the altitude of an aircraft and
the representation of altitude in avionics software. Aircraft
altitude is measured in units (feet, meters, etc.) and has the
fundamental physical dimension of length. The meaning of
altitude depends on the measurement origin and direction, i.e.,
the frame of reference. Whatever value the logic representation
has, a sensor will have determined that value, and so the logic
value will be of limited precision and accuracy, and will be the
value when the sensor sample was taken, not the “current” value.
With an explicit interpretation, units and dimensions can be
checked in logic expressions, as can consistency of attributes
such as measurement origin and orientation. Programming
languages have been enhanced to permit unit and dimensional
analysis in the past but not to support the comprehensive notion
of interpretation [10, 12].

Defining the content and structure of an effective and
complete interpretation is a significant challenge, and in this
paper we define a preliminary form based on the concept of a
real-world type system [21].

III. THE REAL WORLD TYPE CONCEPT

A real-world type is the real-world analog of a type in a
formal language. A real-world type defines the values that a
physical entity in the real world of that type can have and the
operations in which it can engage. More generally, a real-world
type system documents: (a) the real-world attributes associated
with the types, (b) the type rules that define allowable operations
on entities of the various types, (c) the machine representations
for entities of the real-world types, and (d) the relations between

real-world entities and their machine representation. Our
preliminary structure for an explicit interpretation is a set of real-
world types. A real-world type system and its connections to an
application system of interest are shown in Figure 2.

Fig. 2. Real-world type system structure

Real-world types are designed to facilitate design in software
engineering from the real world to the machine world so as to
enable all relevant aspects of the real world to be considered in
developing a computer system. As such, a real-world type
system is not expressible in its entirety within a mathematical
framework. In general, real-world types cannot be expressed
conveniently in the type systems of modern programming
languages, because of the large number of distinct attributes that
real-world types typically include.

IV. SYNTHESIS OF INTERPRETATIONS

The benefits of an interpretation using our prototype
interpretation structure can be considerable. Nevertheless, the
effort involved in defining the interpretation for a particular
application could be significant. The entities in programs that
can have real-world types are variables, constants, functions and
expressions. To create an interpretation based on real-world
types, users have to: (1) develop real-world type definitions, (2)
define the bindings between program entities and the necessary
types, and (3) define the associated type rules.

An overview of the synthesis mechanism is shown in Figure
3. Starting with a variety of assets including the target
application’s sources, other application documents, references
(including ontologies, dictionaries, and other natural-language
information), the synthesis mechanism: (1) extracts candidate
real-world type definitions from the subject software, (2) infers
candidate type bindings from program statements for which
developers have high confidence, and from defined type
inference rules, and (3) extracts candidate type rules from a
verified or otherwise trusted program. The synthesis mechanism
produces candidate artifacts that are potentially incomplete,
inconsistent, of no value, or otherwise deficient. For example,
developers might have used different identifier naming
conventions. In order to determine which of the candidates is of
value, the synthesis phase is followed by inspection, selection,
and completion by software engineers and domain experts.

 3

Fig. 3. Real-world type synthesis system overview

V. SYNTHESIS OF REAL-WORLD TYPES

A. Type Synthesis Process

Synthesizing a real-world type necessitates recovery of
details of a complex, composite entity. A real-world type
consists of: (1) a name that identifies the type, (2) a logic entity
that is relevant to the computation, and (3) one or more attributes
that describe the associated real-world characteristics.
Significant challenges to identifying these structures include:

 Distinguishing accurately between the three major
elements of the composite entity.

 Determining whether the list of attributes is complete and
accurate in the sense that all relevant real-world
characteristics are documented fully.

 Composing information about the same type that is
spread across multiple sources where there are slight
variations in the information, such as text that includes
both singular and plural instances of a term.

For purposes of synthesis, we hypothesize that much of the
necessary information is encoded in the likely existing “informal”
interpretation, i.e., identifiers, comments and other documents
that programmers prepare. Programmers usually follow widely
known and commonly adopted naming conventions. They
follow the same (often implicit) grammatical rules for names of
program elements that are structurally the same. These rules
indicate the role of each term in a name. For example, method
names are often constructed from verbs that are followed by
nouns, while class names are frequently sequences of nouns.

By processing program source text, the synthesizer leverages
these naming conventions to generate a set of terms and linkages
between the terms. Along with a set of reference sources, these
materials are used to create or select from a library a set of
candidate type definitions automatically. The synthesizer then
supports a human-analysis phase in which useful type
definitions are selected from the candidates.

The steps followed by the synthesizer are illustrated in
Figure 4. The individual steps operate as follows:

 Source Parser. The source parser parses the program
source code and locates all of the identifiers in use.

Fig. 4. Synthesis of candidates for real-world types

 Identifier Parser. The identifier parser parses the
identifiers using a grammar based on the naming
conventions, such as camelCase and underscores, and
then, for each identifier, produces a list of the words and
acronyms present within the identifier. We refer to these
words and acronyms as terms.

 Assembler. For each term located in an identifier, the
WordNet lexical database is consulted to determine
whether the term is a noun [20]. Nouns are referred to as
major terms and other terms as associated terms. For
each major term, a list, the term list, of associated terms
that occurred with the major term in an identifier is
computed to form a term entry, a {major term, term list}
pair. Terms in the term list could be nouns, and so a
single identifier could yield multiple term entries.
Multiple term entries for the same major term are
combined, and the frequency of occurrence of the term
across all identifiers is computed. Finally, the
frequencies with which each associated term in the term
list occurred in the same identifier as the major term are
computed, and the entries are combined into a set of raw
type candidates.

WordNet’s lemma is used to normalize every major term,
i.e., plural and abbreviation forms of the same term are
merged. The report sums the frequencies of each major
term, and frequencies of each term in the term list of a
major term.

 Selector. The list of raw candidates synthesized by the
Assembler contains a list of major terms, and a list of
associated terms for each major term. The Selector
prioritizes the candidates based on a selection criterion.
The selection criterion is not fixed and several possible
criteria could be used.

 Interpreter. The role of the Interpreter is to apply human
insight to the candidate types. Programmers and domain
experts can review the prioritized list of candidates and
select important major terms as type names. The
associated terms of a major term suggest real-world

 4

attributes, and, again, programmers and domain experts
can refer to domain models, ontologies, personal
experience, and application specific information to
elaborate candidate types.

B. Type Synthesis Example

The following code snippet comes from the project used in
the case study discussed in Section VIII:

timeToTOC = altToTOC/plan.getAircraft()

 .getClimbRate()/60;

altToBOD = altitude - to.getElevation();

The source parser extracts nine identifiers in total. Five of
the identifiers come from the first statement and the other four
identifiers come from the second statement.

The identifier parser splits these identifiers into terms:

timeToTOC => time, to, TOC

altToTOC => alt, to, TOC

plan => plan

getAircraft => get, aircraft

getClimbRate => get, climb, rate

altToBOD => alt, to, BOD

altitude => altitude

to => to

getElevation => get, elevation

The assembler identifies the major terms and constructs the
term lists. The major term is shown to the left of colon and the
term list to the right:

time, to, TOC => time : to, TOC

alt, to, TOC => alt : to, TOC

plan => plan : NONE

get, aircraft => aircraft : get

get, climb, rate => rate : get, climb

alt, to, BOD => alt : to, BOD

altitude => altitude : NONE

to => NONE

get, elevation => elevation : get

The results for a single major term are accumulated, and the
frequency of occurrence of the major term and the frequencies
of occurrence of the associated terms are determined:

time(1) : to(1), TOC(1)

alt(2) : to(2), TOC(1), BOD(1)

altitude(1) :

plan(1) :

aircraft(1) : get(1)

rate(1) : get(1), climb(1)

elevation(1) : get(1)

Finally, normalized forms of the same major term are coalesced
based on likely abbreviations, plurals, etc.:

time(1) : to(1), TOC(1)

altitude(3) : to(2), TOC(1), BOD(1)

plan(1) :

aircraft(1) : get(1)

rate(1) : get(1), climb(1)

elevation(1) : get(1)

Here, the term alt is an abbreviation of altitude, so the entry
for alt is merged into the entry for altitude.

The selector sorts the results of the assembler using a
changeable criterion, frequency in this example, to produce the
list of type candidates:

altitude(3) : to(2), TOC(1), BOD(1)

aircraft(1) : get(1)

elevation(1) : get(1)

plan(1) :

rate(1) : get(1), climb(1)

time(1) : to(1), TOC(1)

The interpreter (a human) then constructs a final list of type
candidates. The associated terms for each major term can help
suggest real-world attributes:

Type_1 : time

 Possible attribute : NONE

Type_2 : altitude

 Possible attribute : reference point

Type_3 : climb_rate

 Possible attribute : direction of movement

Type 4 : elevation

 Possible attribute : NONE

The associated term BOD (bottom of decrease) appears with the
major term altitude. The term BOD refers to the lowest
altitude, which could be either the local ground or mean sea
level. A real-world attribute reference point is useful for the
type altitude. Similarly, the major term rate has an associated
term climb. The term climb implies the direction of the
movement, and so for the type climb_rate, direction of

movement is likely one of the real-world attributes.

VI. SYNTHESIS OF REAL-WORLD TYPE BINDINGS

The primary principle upon which candidate bindings are
synthesized is inference. Inference has to be “seeded” by an
initial set of bindings created by developers, and those bindings
are then propagated algorithmically using a set of inference
concepts and an associated inference process.

A. Binding Synthesis Concepts

The prototype supports three types of inference:

 Parameter inference. Parameter type bindings in
method declarations are propagated to arguments in
method invocations.

 Return statement inference. Types bound to return
values are propagated to method signatures.

 Assignment inference. Type bindings in assignment
statements are propagated from one side to the other.

Figure 5 illustrates the parameter inference approach. The
individual steps are as follows:

 Trusted method selection. Users select a list of methods
that they trust, i.e., methods of which all invocations are
assumed to be coded correctly.

 Invocation location. All invocations of the methods in
the list are located.

 Parameter and argument location. A parser produces
an abstract syntax tree for the program. For method
declarations, the parser retrieves parameters and their
real-world types. For method invocations, the parser
locates the arguments so that the binder can process them
in the next step.

 Binding. The parameter types are bound to the
corresponding arguments. If an argument has been
bound previously to an inconsistent real-world type, an
error message is issued.

 5

As an example, consider the following method declaration:

void setLatitude(double l){

 this.lat = l;}

The parser determines that the real-world type for parameter l is
latitude_geocentric as set by the user. Two invocations are
located in the source files:

double lat1, lat2 = 0;

setLatitude(lat1);

setLatitude(lat2);

The type latitude_geocentric is bound to variables lat1 and
lat2. These bindings will persist so that subsequent analyses
will consider lat1 and lat2 as variables of known type
latitude_geocentric.

For return statements, a real-world type might have been
bound to the return value of the method. If this is the case and if
the method declaration contains only one return statement, then
the return type of the method signature will be bound to the same
type.

Fig. 5. Type binding inference from parameters to arguments

Assignment inference can exploit many different heuristics,
and the prototype synthesis mechanism uses two. In the first, if
either side of an assignment has a real-world type binding but
the other does not, then the unbound side is bound to the same
type as the bound side.

The second inference heuristic is based on a simple pattern
matching approach. The algorithm accumulates details of
assignment statements in which the right-hand side of each
assignment is bound to the same single type and the left-hand
side is unbound except for a single instance. If the total number
of such assignments exceeds a threshold, then all of the left-hand
sides are bound to the type of the single bound left-hand side.
Clearly, a wide variety of machine learning techniques could be
used to improve assignment inference.

B. Binding Synthesis Process

The binding inference process combines seeding steps with
inference steps in an attempt to bind as many program entities
as possible. The process is organized into three stages: (1) the
field stage, (2) the method stage, and (3) the local variable stage.
Each stage focuses on a single type of program element and
combines seeding with use of one or more inference concept.
The process is iterative and inference steps are repeated in
sequence until no new bindings are generated.

Field stage. In this stage, developers seed bindings to fields
in class definitions. Classes frequently contain “get” and “set”

methods for these fields, and types can be bound to these
methods if the field is bound. After developers bind real-world
types to all of the fields in class definitions, return statement
inference and assignment inference can be invoked. For example,
consider this class:

public class location{

 double latitude;

 private double getLatitude(){

 return latitude;

 }

 private void setLatitude(double lat){

 latitude = lat;

 }

 ...}

Developers might bind the type latitude_geocentric to the
variable latitude. Return statement inference would generate
bindings for return values of methods similar to getlatitude,
and assignment inference would generate bindings for variable
similar to lat in methods similar to setLatitude.

Method stage. In this stage, developers seed real-world type
bindings to parameters of method declarations. For example,
consider this method signature:

public double distanceTo

 (double lat1, double lon1,

 double lat2, double lon2)

Bindings can be seeded for variables lat1, lat2, lon1 and lon2.
After binding types to method parameters, parameter inference
can be used to generate bindings for method invocations
throughout the application.

Local variable stage. In this stage, developers seed type
bindings for local variables. After seeding a small set of bindings,
assignment inference and return statement inference can be used
to generate more bindings. For example, consider this code
snippet:

getLocalLatitude(){

 double lat1 = 0.0;

 double lat3 = lat1;

 ...

 return lat3}

If the developers bind the real-world type
latitude_geocentric to variable lat1 and then apply inference,
the type latitude_geocentric will be bound to the variable
lat3 through assignment inference, and the type
latitude_geocentric will be bound to the method return value
of getLocalLatitude by return statement inference.

VII. SYNTHESIS OF REAL-WORLD TYPE RULES

The third phase in the synthesis of the real-world type system
is to recover the type rules, i.e., to determine the legal operations
involving variables of the various real-world types and the types
of the results of those operations. The phase is based on the
hypothesis that, for an existing program which has been
developed and verified carefully, the implied use of real-world
types in the program is largely correct. Thus, inferring rules from
such a program is likely to be successful. Also, many general
templates based on unary operators (such as negation) and
binary operators (such as addition) need to be instantiated
frequently.

 6

Fig. 6. Synthesizing real-world type rules

The mechanism in our prototype proceeds in three steps
shown in Figure 6:

 Verification. The verification step checks the available
source files and selects those for which there is
reasonable assurance of adequate verification.

 Selector. Candidate type rules are formed by collecting
details of all operations involving entities with real-
world types including the operation, the real-world types
used, and the frequencies of each particular combination.

 Interpreter. As in type synthesis, programmers and
domain experts review the candidate type rules and select
those considered valid.

VIII. CASE STUDY

In order to get insights into the utility and performance of
real-world type synthesis, we applied the mechanisms to an
open-source software project for which we have previously and
separately developed a complete real-world type system with no
automated support. The subject of study was a project called the
Kelpie Flight Planner [13]. Having an existing complete
example real-world type system, we were able to compare the
results of the synthesis mechanism with the human-generated
system. The authors have no association with the Kelpie Flight
Planner project other than using it in this research.

The Kelpie Flight Planner is a moderate-sized, open-source
Java project based on Flightgear, a flight simulator [6]. The
program uses the airport and navaid databases of Flightgear to
determine routes between airports based on user inputs. Results
are presented using a sophisticated graphical interface. The
program is 13,884 lines long, is organized as 10 packages, and
is contained in 126 source files. The human-generated, real-
world type system for the planner project contains 35 real-world
types, 97 real-world type rules, and 255 real-world type bindings.

A. Synthesis Of Type Candidates

The total number of identifiers in the project is 28,754. Most
classes in the project have less than 200 identifiers, and a few
have more than 2,000. The identifier parser produces 45,585

terms in total, and so the average number of terms per identifier
is approximately 1.59. 9,352 identifiers were parsed into two
terms, 2,839 identifiers were parsed into three terms, and 582
identifiers were parsed into lists with more than three terms.

The first stage of the assembler searches for identifiers
whose lists of terms contain a noun (major term). Of the 28,754
identifiers that were identified, 20,140 had a noun within their
lists. These identifiers contained a total of 30,358 terms. The
second stage of the assembler merges the lists of terms for
identifiers that possess the same major term. 676 different terms
were determined to be nouns and constitute the final set of major
terms. Thus, the draft set of real-world type candidates has 676
entries. The third and final stage of the assembler coalesces the
set of candidates using WordNet’s lemma. After this stage, the
final set of candidates had 528 entries.

Fig. 7. Number of potential attributes for candidates

Every candidate in the set is a potential real-world type. The
major term in the candidate usually leads to the primary meaning
or type name. The associated terms that appear with a major term
are considered as potential real-world attributes for the real-
world type. Figure 7 shows how many potential real-world
attributes each candidate in the final set could have.

Beginning with the set of candidates, the selector applies two
selection criteria: (1) the frequency of major terms, and (2) the
number of possible attributes a major term has.

For criterion 1, the selector sorts the list of candidates by the
frequency of major terms, and then reduces the set by cutting all
terms with frequencies below a selectable threshold. Table 1
shows the results of applying the first criterion with different
thresholds. The first column is the threshold values, and the
second column the number of terms having frequencies more
than the threshold value. The third column is the average
frequency of the terms with frequencies above the threshold, and
the fourth column shows the average number of potential
attributes the terms have.

TABLE I. SELECTION BASED ON FREQUENCY OF MAJOR TERMS

Threshold

values

Number of

terms

Average

frequency

Average number of

attributes

200 29 341 20.2

100 77 181 13.6

50 142 150 10.5

30 217 111 8.2

20 240 103 7.7

For criterion 2, the selector sorts the list of candidates by the

number of attributes each term has and eliminates terms whose
number of potential attributes are below a selectable a threshold.

 7

Table 2 shows the results of applying the second criterion with
different thresholds.

TABLE II. SELECTION BASED ON NUMBER OF POTENTIAL ATTRIBUTES

Threshold

values

Number

of terms

Average number

of attributes

Average frequency

(of major terms)

20 21 26.9 302

10 73 17.1 191

5 146 11.8 128

3 248 8.3 89

2 331 6.7 71

B. Analysis

In the synthesis mechanism, the interpreter follows the
selector. In the interpreter, human judgment is used to choose
actual real-world types of interest from the set of candidates. The
expectation is that human insight will allow rapid selection and
subsequent synthesis of appropriate syntactic structures.

In this case study, rather than operating the interpreter phase
we compared the set of candidates with the actual real-world
type definitions developed separately. The latter were treated as
a “gold” set for purposes of evaluation.

Table III shows the assessment of the candidate set based on
selector criterion 1 (frequency of occurrence of the major term)
together with our assessment of the connections between the set
of candidates and the real-world types that we identified.

TABLE III. CONNECTIONS BETWEEN CANDIDATES AND KNOWN REAL-
WORLD TYPES BASED ON CRITERION 1

Threshold

values

Number of

terms

Important

major terms

Real-world types that

can be formed

200 29 2 11

100 77 7 18

50 142 15 21

30 217 21 25

For purposes of this analysis, we define a term to be

important if, in our opinion, the term could lead directly to a
real-world type definition. The first column and second column
are repeated from Table 1. The third column shows how many
important terms are in the subsets. The last column shows how
many real-world types could be formed from the important
major terms. The number in this column is typically larger than
the number in the third column, because one major term might
be used to construct more than one real-world type. For example,
the term lat can be used to define real-world types
geocentric_latitude, geodetic_latitude and others.

With a threshold value of 50 (frequency), we were able to
form 21 real-world types. The total number of real-world types
in the application is 35, and so we conclude that a large
proportion of the actual real-world types could be formed from
the candidates. With the lower threshold, application and
domain experts will have to review more terms, but more real-
world types could probably be formed.

Table IV shows the assessment of the candidate set based on
selector criterion 2 (number of potential attributes of the major
term) together with our assessment the connections between the
set of candidates and the real-world types that we identified.

The first column and second column are repeated from Table
2. With a threshold value of 5, we could construct 20 real-world
types and 23 when the threshold was set to 3.

TABLE IV. CONNECTIONS BETWEEN CANDIDATES AND KNOWN REAL-
WORLD TYPES BASED ON CRITERION 2

Threshold

values

Number of

terms

Important

major terms

Real-world types that

can be formed

20 21 2 11

10 73 5 15

5 142 10 20

3 217 15 23

The results shown in Tables III and IV suggest that

reviewing approximately 80 terms from the candidate set can
reveal a substantial fraction the useful set of actual real-world
types.

C. Synthesis Of Real-World Type Bindings

Table V describes data collected at each stage.

TABLE V. PERFORMANCE OF TYPE INFERENCE

Process stage Bindings

seeded by

developers

Bindings

synthesized by

inference

Total number

of bindings

Field 28 64 92

Method 64 65 221

Locate variable 30 4 255

In the table, the first column shows the stage of the bindings

synthesis process. The second column shows the number of
bindings we seeded acting as developers. The third column
shows the number of type bindings automatically generated by
inference. The fourth column shows the total number of
bindings after inference at that stage.

In this study, we maximized the possibility of parameter
inference, i.e., if the parameters were bound with appropriate
real-world types, these types were propagated to all arguments.
For assignment inference, we listed eight assignments that we
trust as permitted assignment for inference.

In the field stage, we add 28 real-world type bindings to all
suitable fields, and inference then generated 64 type bindings,
mainly from return statement inference and assignment
inference. In the method stage, we seeded 64 type bindings to
suitable parameters in different method declarations, and then
inference produced 65 bindings for arguments in various method
invocations, primarily from parameter inference. In the local-
variables stage, we seeded 30 type bindings to local variables,
and 4 bindings were generated by assignment inference.

The project required 255 bindings in total, and 133 of these
were generated automatically, i.e., 52%. This fraction suggests
that the combination of some human effort and various forms of
inference can yield reasonable performance in binding program
elements to real-world types.

D. Synthesis Of Real-World Type Rules

We determined the number of real-world type rules that
could be synthesized from every class. The necessary type rules
were extracted from a small minority of the files. Most of the

 8

project files yielded less than 20 rules, but a few yielded more
than 50 rules each.

In our hand-build, real-world type system for the Kelpie
Flight Planner project, we created a total of 97 real-world type
rules. The synthesizer mechanism extracted candidate rules
from every class, and the total number extracted from individual
files was 260. Many of these candidate rules are the same, and
they can be reused in different methods of one class or methods
across different classes.

IX. RELATED WORK

Concept location is related to the mapping of real-world
entities to software [1, 7, 8, 11, 17, 18] but with the goal of
improving program understanding. The use of parts of speech of
terms in identifiers has been investigated as a means to extract
information from the source code [2, 14] and to extract domain
models [1, 18]. Extensions to support dimensional and unit
analysis have been developed for several programming
languages [10, 12] but without the general notion of
documenting logic interpretations.

Powerful extensions to the basic notion of type have been
developed, in particular in the form of pluggable type systems
[5, 9, 16]. Pluggable type systems are designed to provide
greater flexibility in type mechanisms. However, the resulting
flexibility remains within the mathematical framework of
machine logic, and does not address the notion of deriving and
exploiting type information from the real world.

Type providers in F# extend the language so that the
compiler can generate both new types and new code that
leverage these types based on the structure of real-world data
services [19]. Type providers in Idris extend this idea to
languages with dependent types [3]. Neither F# or Idris address
the general issue of defining logic interpretations.

The Autocert system develops source-code constraints based
on analysis of real-world information contained in Simulink
models [4]. The checking that this enables is, in part, based on
real-world information but does not enable the comprehensive
checking that real-world types enable.

X. CONCLUSION

Preliminary results indicate that explicit interpretations
based on real-world types provide a useful complement to
available techniques for analysis of critical software systems.
Despite the potential, the effort required to create the
interpretation for an application might be a deterrent.

We have introduced a system for aiding developers in the
creation of interpretations. In an initial case study, we have
shown that significant candidate material can be synthesized
from informal documentation if programmers follow common
rules for forming that documentation.

REFERENCES

[1] S. Abebe, and P. Tonella. “Towards the extraction of domain concepts
from the identifiers,” In Proceedings of the 18th Working Conference on
Reverse Engineering (WCRE), 2011, pp. 77–86.

[2] D. Binkley, M. Hearn, and D. Lawrie. “Improving identifier
informativeness using part of speech information,” in Proceedings of the

8th Working Conference on Mining Software Repositories (MSR), ACM,
New York, NY, USA, 2011, pp. 203–206

[3] D. Christiansen. “Dependent type providers”. Proceedings: 9th ACM
workshop on generic programming, ACM, New York, 2013, pp.23-34.

[4] E. Denney and B. Fischer. “Annotation inference for the safety
certification of automatically generated code”. Proceedings of the 21st
IEEE International Conference on Automated Software Engineering
(ASE ’06), pages 265– 268, Tokyo, Japan, September 2006. IEEE.

[5] T. Ekman and G. Hedin. “Pluggable checking and inferencing of non-null
types for Java.” J. Object Tech., 6(9):455--475, Oct. 2007.

[6] FlightGear. http://www.flightgear.org/

[7] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. “On the use of relevance
feedback in IR-based concept location,” in Proceedings of the 25th
International Conference on Software Maintenance (ICSM 2009). 2009,
pp. 351-360.

[8] S. Grant, J. Cordy, and D. Skillicorn. “Automated concept location using
independent component analysis,” In Proceedings of the 15th Working
Conference onReverse Engineering (WCRE), IEEE Computer Society,
Washington, DC, USA, 2008, pp.138–142.

[9] N. Haldiman, M. Denker, and O. Nierstrasz. “Practical, pluggable types,”
in Proceedings of the 2007 international conference on Dynamic
languages: in conjunction with the 15th International Smalltalk Joint
Conference (ICDL '07). ACM, New York, NY, USA, 2007, pp.183-204.

[10] S. Hangal, and M. Lam. “Automatic dimension inference and checking
for object-oriented programs,” in Proceedings of the 31st International
Conference on Software Engineering (ICSE '09). IEEE Computer Society,
Washington, DC, USA, 2009, pp. 155-165.

[11] E. Hill, L. Pollock, and K. Vijay-Shanker. “Automatically capturing
source code context of nl-queries for software maintenance and reuse,” In
Proceedings of the 31st International Conference on Software
Engineering (ICSE), 2009, pp. 232–242

[12] L. Jiang, and Z. Su. “Osprey: a practical type system for validating
dimensional unit correctness of C programs,” in Proceedings of the 28th
international conference on Software engineering (ICSE '06). ACM, New
York, NY, USA, 2006, pp. 262-271.

[13] Kelpie Flight Planner for Flightgear.
 http://sourceforge.net/projects/fgflightplanner/

[14] Y. Li, H. Yang, and W. Chu. “Generating linkage between source code
and evolvable domain knowledge for the ease of software evolution,” in
Proceedings International Symposium on Principles of Software
Evolution, 2000.

[15] Mars Climate Orbiter Mishap Investigation Board Phase I Report, 1999.
National Aeronautics and Space Administration, Washington DC,
November 10, 1999.

[16] A. Milanova and W. Huang. “Inference and checking of context-sensitive
pluggable types,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering (FSE '12). ACM, New York, NY, USA, 2012, Article 26。

[17] D. Poshyvanyk, A. Marcus. “Combining formal concept analysis with
information retrieval for concept location in source code,” in Proceedings
of the 15th IEEE International Conference on Program Comprehension
(ICPC), 2007, pp.37–48.

[18] D. Ratiu, and F. Deissenboeck. “From Reality to Programs and (Not Quite)
Back Again,” in Proceedings of the 15th IEEE International Conference
on Program Comprehension(ICPC '07). IEEE Computer Society,
Washington, DC, USA, 2007. pp. 91-102.

[19] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu, T. Liu,
B. McNamara, D. Quirk, M. Taveggia, W. Chae, U. Matsveyeu, and T.
Petricek. “Strongly-typed language support for internet-scale information
sources.” Technical Report MSR-TR-2012-101, Microsoft Research,
September 2012.

[20] Wordnet. http://wordnet.princeton.edu

[21] J. Xiang, J. Knight, and K. Sullivan, “Real-world Types and Their
Application”, SAFECOMP: International Conference on Computer
Safety, Reliability and Security, Delft, The Netherlands, 2015.

http://www.flightgear.org/

