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Abstract— Logic interpretations define the relationships 

between real-world entities and their logic representations. We 

introduce an explicit structure for documenting interpretations 

based on real-world types. As we have demonstrated previously, 

the benefits of using real-world types can be considerable, but the 

effort required might deter programmers. In this paper, we 

introduce a semi-automated mechanism that: (a) synthesizes 

candidate real-world types, (b) infers real-world type bindings for 

program variables, and (c) synthesizes candidate type rules from 

verified or trusted programs.  We illustrate the synthesis approach 

using an open-source project for which we have previously 

developed a complete real-world type system. 
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I. INTRODUCTION 

The notations that are used for defining software are formal 
languages. High-level languages, assembly languages and 
machine languages are all formal and all have the property that, 
as formal languages, they have no inherent real-world meaning. 
For any statement in a formal language to be anything other than 
a purely syntactic entity, an interpretation has to be added to the 
logic. The interpretation defines the intended meaning in the real 
world of elements of the logic. In doing so, the interpretation 
exposes the logic to constraints and invariants that derive from 
the real world, such as the laws of physics. To be valid, the logic 
must conform to these constraints and invariants, and so they 
provide a rich opportunity for error checking of the software. 

In practice, the interpretation of a software system is always 
present, but usually documented in an ad hoc, informal and 
sometimes implicit manner using casual techniques such as 
“descriptive” comments, “meaningful” identifiers, and design 
documents. We note that the execution of software is unchanged 
by the replacement of identifiers with random strings, and the 
removal of comments and design documents. The logic is 
unaffected by these changes, but human understanding of what 
the logic does is mostly destroyed. 

The importance of interpretation can be seen when one notes 
that many software systems, especially cyber-physical systems, 
interact with the real world. Such systems are often safety 
critical, and assurance of their correct operation depends on the 
interaction being complete and correct. Unless the interaction is 
documented carefully, doubt in the correctness of the effects of 
such systems is inevitable. 

In previous work, we showed that an explicit interpretation 
provides a new capability for detecting software faults, and we 

demonstrated its performance [21]. An interpretation allows 
automated detection of faults that result from misuse of real-
world entities or violate real-world constraints. In case studies, 
analyses revealed both unrecognized faults and faults that had 
been reported as bugs in real systems. 

In this paper we make two contributions: (a) we introduce a 
preliminary explicit content and structure for an interpretation, 
and (b) we introduce a semi-automatic synthesis system for 
creating draft interpretations from available system assets. 
Making the interpretation explicit eliminates the ad hoc and 
informal form that is used currently. The effort in constructing 
an interpretation might be considerable, and so semi-automatic 
synthesis is designed to assist engineers and reduce that effort. 

The explicit documentation of the interpretation of logic 
provides three advantages: (a) it informs the software design of 
the entities that the software will affect enabling better design 
choices, (b) it documents essential reference materials in a 
centralized and well-defined form allowing rigorous 
examination of the logic for correctness and completeness by 
human inspection, and (c) the real-world constraints and 
invariants that the interpretation exposes can be checked 
providing a new mechanism for detecting software faults. 

To investigate the utility of the synthesis system concepts 
presented in this paper, we have developed a prototype that we 
applied to Java. The prototype analyzes Java source programs 
based on naming conventions, and presents the synthesized 
candidate artifacts to the programmer ranked by preliminary 
suggestions. We conducted a case study on a moderate-sized 
project for which separately we have developed a complete real-
world type system. The results show that most of the real-world 
types needed in the project can be located in the synthesized 
candidates as can the type rules and bindings. 

In the next Section, we summarize the interpretation concept 
and introduce a structure for interpretations based on real-world 
types. In Sections III through VII we discuss the concept of real-
world types and the synthesis of interpretations, real-world types, 
real-world type bindings, and real-world type rules. In Section 
VIII we present a case study assessment of the synthesis 
mechanism, and in Section IX we review related work. Finally, 
in Section X we present our conclusions. 

II. CONCEPT OF INTERPRETATION 

An interpretation defines the real-world meaning of an 
element of logic. For example, an integer variable in an avionics 
program might be used to represent the actual altitude of an 
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aircraft. Within the logic of the software, the variable is merely 
an integer. The role of the interpretation is to reveal everything 
about the actual altitude of the aircraft. 

Figure 1 illustrates this idea. The system design process 
starts with a problem to be solved in the real world and develops 
a concrete solution in logic. The interpretation provides the real-
world details of an entity in the logic. 

 

Fig. 1. Interpretation as an abstraction from concrete to abstract. 

Without an explicit interpretation, important characteristics 
of real-world entities, such as units and dimensions, and 
associated real-world constraints, such as not mixing units, are 
stated and enforced either in ad-hoc ways or not at all. In 
addition, crucial relationships between logic representations and 
real-world entities, such as accuracy of sensed values, remain 
under specified. The result is that programs tend to treat 
representations in logic as if they were isomorphic to the real-
world entities. This practice leads to the introduction of faults 
into systems due to unrecognized discrepancies, and executions 
end up violating rules inherited from the real world [15]. 

As an example, consider again the altitude of an aircraft and 
the representation of altitude in avionics software. Aircraft 
altitude is measured in units (feet, meters, etc.) and has the 
fundamental physical dimension of length. The meaning of 
altitude depends on the measurement origin and direction, i.e., 
the frame of reference. Whatever value the logic representation 
has, a sensor will have determined that value, and so the logic 
value will be of limited precision and accuracy, and will be the 
value when the sensor sample was taken, not the “current” value. 
With an explicit interpretation, units and dimensions can be 
checked in logic expressions, as can consistency of attributes 
such as measurement origin and orientation. Programming 
languages have been enhanced to permit unit and dimensional 
analysis in the past but not to support the comprehensive notion 
of interpretation [10, 12]. 

Defining the content and structure of an effective and 
complete interpretation is a significant challenge, and in this 
paper we define a preliminary form based on the concept of a 
real-world type system [21]. 

III. THE REAL WORLD TYPE CONCEPT 

A real-world type is the real-world analog of a type in a 
formal language. A real-world type defines the values that a 
physical entity in the real world of that type can have and the 
operations in which it can engage. More generally, a real-world 
type system documents: (a) the real-world attributes associated 
with the types, (b) the type rules that define allowable operations 
on entities of the various types, (c) the machine representations 
for entities of the real-world types, and (d) the relations between 

real-world entities and their machine representation. Our 
preliminary structure for an explicit interpretation is a set of real-
world types. A real-world type system and its connections to an 
application system of interest are shown in Figure 2. 

 

Fig. 2. Real-world type system structure 

Real-world types are designed to facilitate design in software 
engineering from the real world to the machine world so as to 
enable all relevant aspects of the real world to be considered in 
developing a computer system. As such, a real-world type 
system is not expressible in its entirety within a mathematical 
framework. In general, real-world types cannot be expressed 
conveniently in the type systems of modern programming 
languages, because of the large number of distinct attributes that 
real-world types typically include. 

IV. SYNTHESIS OF INTERPRETATIONS 

The benefits of an interpretation using our prototype 
interpretation structure can be considerable. Nevertheless, the 
effort involved in defining the interpretation for a particular 
application could be significant. The entities in programs that 
can have real-world types are variables, constants, functions and 
expressions. To create an interpretation based on real-world 
types, users have to: (1) develop real-world type definitions, (2) 
define the bindings between program entities and the necessary 
types, and (3) define the associated type rules. 

An overview of the synthesis mechanism is shown in Figure 
3. Starting with a variety of assets including the target 
application’s sources, other application documents, references 
(including ontologies, dictionaries, and other natural-language 
information), the synthesis mechanism: (1) extracts candidate 
real-world type definitions from the subject software, (2) infers 
candidate type bindings from program statements for which 
developers have high confidence, and from defined type 
inference rules, and (3) extracts candidate type rules from a 
verified or otherwise trusted program. The synthesis mechanism 
produces candidate artifacts that are potentially incomplete, 
inconsistent, of no value, or otherwise deficient. For example, 
developers might have used different identifier naming 
conventions. In order to determine which of the candidates is of 
value, the synthesis phase is followed by inspection, selection, 
and completion by software engineers and domain experts. 
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Fig. 3. Real-world type synthesis system overview 

V. SYNTHESIS OF REAL-WORLD TYPES 

A. Type Synthesis Process 

Synthesizing a real-world type necessitates recovery of 
details of a complex, composite entity. A real-world type 
consists of: (1) a name that identifies the type, (2) a logic entity 
that is relevant to the computation, and (3) one or more attributes 
that describe the associated real-world characteristics. 
Significant challenges to identifying these structures include: 

 Distinguishing accurately between the three major 
elements of the composite entity. 

 Determining whether the list of attributes is complete and 
accurate in the sense that all relevant real-world 
characteristics are documented fully. 

 Composing information about the same type that is 
spread across multiple sources where there are slight 
variations in the information, such as text that includes 
both singular and plural instances of a term. 

For purposes of synthesis, we hypothesize that much of the 
necessary information is encoded in the likely existing “informal” 
interpretation, i.e., identifiers, comments and other documents 
that programmers prepare. Programmers usually follow widely 
known and commonly adopted naming conventions. They 
follow the same (often implicit) grammatical rules for names of 
program elements that are structurally the same. These rules 
indicate the role of each term in a name. For example, method 
names are often constructed from verbs that are followed by 
nouns, while class names are frequently sequences of nouns. 

By processing program source text, the synthesizer leverages 
these naming conventions to generate a set of terms and linkages 
between the terms. Along with a set of reference sources, these 
materials are used to create or select from a library a set of 
candidate type definitions automatically. The synthesizer then 
supports a human-analysis phase in which useful type 
definitions are selected from the candidates. 

The steps followed by the synthesizer are illustrated in 
Figure 4. The individual steps operate as follows: 

 Source Parser. The source parser parses the program 
source code and locates all of the identifiers in use. 

 

Fig. 4. Synthesis of candidates for real-world types 

 Identifier Parser. The identifier parser parses the 
identifiers using a grammar based on the naming 
conventions, such as camelCase and underscores, and 
then, for each identifier, produces a list of the words and 
acronyms present within the identifier. We refer to these 
words and acronyms as terms. 

 Assembler. For each term located in an identifier, the 
WordNet lexical database is consulted to determine 
whether the term is a noun [20]. Nouns are referred to as 
major terms and other terms as associated terms. For 
each major term, a list, the term list, of associated terms 
that occurred with the major term in an identifier is 
computed to form a term entry, a {major term, term list} 
pair. Terms in the term list could be nouns, and so a 
single identifier could yield multiple term entries. 
Multiple term entries for the same major term are 
combined, and the frequency of occurrence of the term 
across all identifiers is computed. Finally, the 
frequencies with which each associated term in the term 
list occurred in the same identifier as the major term are 
computed, and the entries are combined into a set of raw 
type candidates. 

WordNet’s lemma is used to normalize every major term, 
i.e., plural and abbreviation forms of the same term are 
merged. The report sums the frequencies of each major 
term, and frequencies of each term in the term list of a 
major term. 

 Selector. The list of raw candidates synthesized by the 
Assembler contains a list of major terms, and a list of 
associated terms for each major term. The Selector 
prioritizes the candidates based on a selection criterion. 
The selection criterion is not fixed and several possible 
criteria could be used. 

 Interpreter. The role of the Interpreter is to apply human 
insight to the candidate types. Programmers and domain 
experts can review the prioritized list of candidates and 
select important major terms as type names. The 
associated terms of a major term suggest real-world 
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attributes, and, again, programmers and domain experts 
can refer to domain models, ontologies, personal 
experience, and application specific information to 
elaborate candidate types. 

B. Type Synthesis Example 

The following code snippet comes from the project used in 
the case study discussed in Section VIII: 

timeToTOC = altToTOC/plan.getAircraft() 

         .getClimbRate()/60; 

altToBOD  = altitude - to.getElevation(); 

The source parser extracts nine identifiers in total. Five of 
the identifiers come from the first statement and the other four 
identifiers come from the second statement. 

The identifier parser splits these identifiers into terms: 

timeToTOC   =>  time, to, TOC 

altToTOC    =>  alt, to, TOC 

plan      =>  plan 

getAircraft   =>  get, aircraft 

getClimbRate   =>  get, climb, rate 

altToBOD    =>  alt, to, BOD 

altitude    =>  altitude 

to      =>  to 

getElevation   =>  get, elevation 

The assembler identifies the major terms and constructs the 
term lists. The major term is shown to the left of colon and the 
term list to the right:  

time, to, TOC  => time   : to, TOC 

alt, to, TOC  => alt   : to, TOC 

plan     => plan    : NONE 

get, aircraft   => aircraft  : get 

get, climb, rate => rate    : get, climb                                     

alt, to, BOD   => alt   : to, BOD 

altitude    => altitude  : NONE 

to      => NONE 

get, elevation   => elevation : get 

The results for a single major term are accumulated, and the 
frequency of occurrence of the major term and the frequencies 
of occurrence of the associated terms are determined: 

time(1)    : to(1), TOC(1) 

alt(2)     : to(2), TOC(1), BOD(1) 

altitude(1)  :  

plan(1)    :  

aircraft(1)   : get(1) 

rate(1)    : get(1), climb(1) 

elevation(1)  : get(1) 

Finally, normalized forms of the same major term are coalesced 
based on likely abbreviations, plurals, etc.: 

time(1)    : to(1), TOC(1) 

altitude(3)   : to(2), TOC(1), BOD(1) 

plan(1)    :  

aircraft(1)   : get(1) 

rate(1)    : get(1), climb(1) 

elevation(1)  : get(1) 

Here, the term alt is an abbreviation of altitude, so the entry 
for alt is merged into the entry for altitude.  

The selector sorts the results of the assembler using a 
changeable criterion, frequency in this example, to produce the 
list of type candidates: 

altitude(3)   : to(2), TOC(1), BOD(1) 

aircraft(1)   : get(1) 

elevation(1)  : get(1) 

plan(1)    :  

rate(1)     : get(1), climb(1) 

time(1)    : to(1), TOC(1) 

The interpreter (a human) then constructs a final list of type 
candidates. The associated terms for each major term can help 
suggest real-world attributes: 

Type_1      : time 

 Possible attribute : NONE 

Type_2      : altitude 

 Possible attribute : reference point  

Type_3      : climb_rate 

 Possible attribute : direction of movement 

Type 4      : elevation 

 Possible attribute : NONE 

The associated term BOD (bottom of decrease) appears with the 
major term altitude. The term BOD refers to the lowest 
altitude, which could be either the local ground or mean sea 
level. A real-world attribute reference point is useful for the 
type altitude. Similarly, the major term rate has an associated 
term climb. The term climb implies the direction of the 
movement, and so for the type climb_rate, direction of 

movement is likely one of the real-world attributes. 

VI. SYNTHESIS OF REAL-WORLD TYPE BINDINGS 

The primary principle upon which candidate bindings are 
synthesized is inference. Inference has to be “seeded” by an 
initial set of bindings created by developers, and those bindings 
are then propagated algorithmically using a set of inference 
concepts and an associated inference process. 

A. Binding Synthesis Concepts 

The prototype supports three types of inference:  

 Parameter inference. Parameter type bindings in 
method declarations are propagated to arguments in 
method invocations. 

 Return statement inference. Types bound to return 
values are propagated to method signatures. 

 Assignment inference. Type bindings in assignment 
statements are propagated from one side to the other. 

Figure 5 illustrates the parameter inference approach. The 
individual steps are as follows:  

 Trusted method selection. Users select a list of methods 
that they trust, i.e., methods of which all invocations are 
assumed to be coded correctly. 

 Invocation location. All invocations of the methods in 
the list are located. 

 Parameter and argument location. A parser produces 
an abstract syntax tree for the program. For method 
declarations, the parser retrieves parameters and their 
real-world types. For method invocations, the parser 
locates the arguments so that the binder can process them 
in the next step.  

 Binding. The parameter types are bound to the 
corresponding arguments. If an argument has been 
bound previously to an inconsistent real-world type, an 
error message is issued. 
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As an example, consider the following method declaration: 

void setLatitude(double l){ 

 this.lat = l;} 

The parser determines that the real-world type for parameter l is 
latitude_geocentric as set by the user. Two invocations are 
located in the source files:  

double lat1, lat2 = 0; 

setLatitude(lat1); 

setLatitude(lat2); 

The type latitude_geocentric is bound to variables lat1 and 
lat2. These bindings will persist so that subsequent analyses 
will consider lat1 and lat2 as variables of known type 
latitude_geocentric. 

For return statements, a real-world type might have been 
bound to the return value of the method. If this is the case and if 
the method declaration contains only one return statement, then 
the return type of the method signature will be bound to the same 
type. 

 

Fig. 5. Type binding inference from parameters to arguments 

Assignment inference can exploit many different heuristics, 
and the prototype synthesis mechanism uses two. In the first, if 
either side of an assignment has a real-world type binding but 
the other does not, then the unbound side is bound to the same 
type as the bound side. 

The second inference heuristic is based on a simple pattern 
matching approach. The algorithm accumulates details of 
assignment statements in which the right-hand side of each 
assignment is bound to the same single type and the left-hand 
side is unbound except for a single instance. If the total number 
of such assignments exceeds a threshold, then all of the left-hand 
sides are bound to the type of the single bound left-hand side. 
Clearly, a wide variety of machine learning techniques could be 
used to improve assignment inference. 

B. Binding Synthesis Process 

The binding inference process combines seeding steps with 
inference steps in an attempt to bind as many program entities 
as possible. The process is organized into three stages: (1) the 
field stage, (2) the method stage, and (3) the local variable stage. 
Each stage focuses on a single type of program element and 
combines seeding with use of one or more inference concept. 
The process is iterative and inference steps are repeated in 
sequence until no new bindings are generated. 

Field stage. In this stage, developers seed bindings to fields 
in class definitions. Classes frequently contain “get” and “set” 

methods for these fields, and types can be bound to these 
methods if the field is bound. After developers bind real-world 
types to all of the fields in class definitions, return statement 
inference and assignment inference can be invoked. For example, 
consider this class: 

public class location{ 

 double latitude;  

 private double getLatitude(){ 

  return latitude; 

 } 

 private void setLatitude(double lat){ 

  latitude = lat; 

 } 

  ...} 

Developers might bind the type latitude_geocentric to the 
variable latitude. Return statement inference would generate 
bindings for return values of methods similar to getlatitude, 
and assignment inference would generate bindings for variable 
similar to lat in methods similar to setLatitude. 

Method stage. In this stage, developers seed real-world type 
bindings to parameters of method declarations. For example, 
consider this method signature: 

public double distanceTo 

 (double lat1, double lon1, 

 double lat2, double lon2) 

Bindings can be seeded for variables lat1, lat2, lon1 and lon2. 
After binding types to method parameters, parameter inference 
can be used to generate bindings for method invocations 
throughout the application. 

Local variable stage. In this stage, developers seed type 
bindings for local variables. After seeding a small set of bindings, 
assignment inference and return statement inference can be used 
to generate more bindings. For example, consider this code 
snippet:  

getLocalLatitude(){ 

 double lat1 = 0.0; 

 double lat3 = lat1; 

  ... 

  return lat3} 

If the developers bind the real-world type 
latitude_geocentric to variable lat1 and then apply inference, 
the type latitude_geocentric will be bound to the variable 
lat3 through assignment inference, and the type 
latitude_geocentric will be bound to the method return value 
of getLocalLatitude by return statement inference. 

VII. SYNTHESIS OF REAL-WORLD TYPE RULES 

The third phase in the synthesis of the real-world type system 
is to recover the type rules, i.e., to determine the legal operations 
involving variables of the various real-world types and the types 
of the results of those operations. The phase is based on the 
hypothesis that, for an existing program which has been 
developed and verified carefully, the implied use of real-world 
types in the program is largely correct. Thus, inferring rules from 
such a program is likely to be successful. Also, many general 
templates based on unary operators (such as negation) and 
binary operators (such as addition) need to be instantiated 
frequently. 
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Fig. 6. Synthesizing real-world type rules 

The mechanism in our prototype proceeds in three steps 
shown in Figure 6:  

 Verification. The verification step checks the available 
source files and selects those for which there is 
reasonable assurance of adequate verification. 

 Selector. Candidate type rules are formed by collecting 
details of all operations involving entities with real-
world types including the operation, the real-world types 
used, and the frequencies of each particular combination. 

 Interpreter. As in type synthesis, programmers and 
domain experts review the candidate type rules and select 
those considered valid. 

VIII. CASE STUDY 

In order to get insights into the utility and performance of 
real-world type synthesis, we applied the mechanisms to an 
open-source software project for which we have previously and 
separately developed a complete real-world type system with no 
automated support. The subject of study was a project called the 
Kelpie Flight Planner [13]. Having an existing complete 
example real-world type system, we were able to compare the 
results of the synthesis mechanism with the human-generated 
system. The authors have no association with the Kelpie Flight 
Planner project other than using it in this research. 

The Kelpie Flight Planner is a moderate-sized, open-source 
Java project based on Flightgear, a flight simulator [6]. The 
program uses the airport and navaid databases of Flightgear to 
determine routes between airports based on user inputs. Results 
are presented using a sophisticated graphical interface. The 
program is 13,884 lines long, is organized as 10 packages, and 
is contained in 126 source files. The human-generated, real-
world type system for the planner project contains 35 real-world 
types, 97 real-world type rules, and 255 real-world type bindings. 

A. Synthesis Of Type Candidates 

The total number of identifiers in the project is 28,754. Most 
classes in the project have less than 200 identifiers, and a few 
have more than 2,000. The identifier parser produces 45,585 

terms in total, and so the average number of terms per identifier 
is approximately 1.59. 9,352 identifiers were parsed into two 
terms, 2,839 identifiers were parsed into three terms, and 582 
identifiers were parsed into lists with more than three terms. 

The first stage of the assembler searches for identifiers 
whose lists of terms contain a noun (major term). Of the 28,754 
identifiers that were identified, 20,140 had a noun within their 
lists. These identifiers contained a total of 30,358 terms. The 
second stage of the assembler merges the lists of terms for 
identifiers that possess the same major term. 676 different terms 
were determined to be nouns and constitute the final set of major 
terms. Thus, the draft set of real-world type candidates has 676 
entries. The third and final stage of the assembler coalesces the 
set of candidates using WordNet’s lemma. After this stage, the 
final set of candidates had 528 entries. 

 

Fig. 7. Number of potential attributes for candidates 

Every candidate in the set is a potential real-world type. The 
major term in the candidate usually leads to the primary meaning 
or type name. The associated terms that appear with a major term 
are considered as potential real-world attributes for the real-
world type. Figure 7 shows how many potential real-world 
attributes each candidate in the final set could have. 

Beginning with the set of candidates, the selector applies two 
selection criteria: (1) the frequency of major terms, and (2) the 
number of possible attributes a major term has. 

For criterion 1, the selector sorts the list of candidates by the 
frequency of major terms, and then reduces the set by cutting all 
terms with frequencies below a selectable threshold. Table 1 
shows the results of applying the first criterion with different 
thresholds. The first column is the threshold values, and the 
second column the number of terms having frequencies more 
than the threshold value. The third column is the average 
frequency of the terms with frequencies above the threshold, and 
the fourth column shows the average number of potential 
attributes the terms have. 

TABLE I.  SELECTION BASED ON FREQUENCY OF MAJOR TERMS 

Threshold 

values 

Number of 

terms 

Average 

frequency 

Average number of 

attributes 

200 29 341 20.2 

100 77 181 13.6 

50 142 150 10.5 

30 217 111 8.2 

20 240 103 7.7 

 
For criterion 2, the selector sorts the list of candidates by the 

number of attributes each term has and eliminates terms whose 
number of potential attributes are below a selectable a threshold. 
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Table 2 shows the results of applying the second criterion with 
different thresholds. 

TABLE II.  SELECTION BASED ON NUMBER OF POTENTIAL ATTRIBUTES 

Threshold 

values 

Number 

of terms 

Average number 

of attributes  

Average frequency 

(of major terms) 

20 21 26.9 302 

10 73 17.1 191 

5 146 11.8 128 

3 248 8.3 89 

2 331 6.7 71 

B. Analysis 

In the synthesis mechanism, the interpreter follows the 
selector. In the interpreter, human judgment is used to choose 
actual real-world types of interest from the set of candidates. The 
expectation is that human insight will allow rapid selection and 
subsequent synthesis of appropriate syntactic structures. 

In this case study, rather than operating the interpreter phase 
we compared the set of candidates with the actual real-world 
type definitions developed separately. The latter were treated as 
a “gold” set for purposes of evaluation. 

Table III shows the assessment of the candidate set based on 
selector criterion 1 (frequency of occurrence of the major term) 
together with our assessment of the connections between the set 
of candidates and the real-world types that we identified. 

TABLE III.  CONNECTIONS BETWEEN CANDIDATES AND KNOWN REAL-
WORLD TYPES BASED ON CRITERION 1 

Threshold 

values 

Number of 

terms 

Important 

major terms 

Real-world types that 

can be formed 

200 29 2 11 

100 77 7 18 

50 142 15 21 

30 217 21 25 

 
For purposes of this analysis, we define a term to be 

important if, in our opinion, the term could lead directly to a 
real-world type definition. The first column and second column 
are repeated from Table 1. The third column shows how many 
important terms are in the subsets. The last column shows how 
many real-world types could be formed from the important 
major terms. The number in this column is typically larger than 
the number in the third column, because one major term might 
be used to construct more than one real-world type. For example, 
the term lat can be used to define real-world types 
geocentric_latitude, geodetic_latitude and others. 

With a threshold value of 50 (frequency), we were able to 
form 21 real-world types. The total number of real-world types 
in the application is 35, and so we conclude that a large 
proportion of the actual real-world types could be formed from 
the candidates. With the lower threshold, application and 
domain experts will have to review more terms, but more real-
world types could probably be formed. 

Table IV shows the assessment of the candidate set based on 
selector criterion 2 (number of potential attributes of the major 
term) together with our assessment the connections between the 
set of candidates and the real-world types that we identified. 

The first column and second column are repeated from Table 
2. With a threshold value of 5, we could construct 20 real-world 
types and 23 when the threshold was set to 3. 

TABLE IV.  CONNECTIONS BETWEEN CANDIDATES AND KNOWN REAL-
WORLD TYPES BASED ON CRITERION 2 

Threshold 

values 

Number of 

terms 

Important 

major terms 

Real-world types that 

can be formed 

20 21 2 11 

10 73 5 15 

5 142 10 20 

3 217 15 23 

 
The results shown in Tables III and IV suggest that 

reviewing approximately 80 terms from the candidate set can 
reveal a substantial fraction the useful set of actual real-world 
types. 

C. Synthesis Of Real-World Type Bindings 

Table V describes data collected at each stage. 

TABLE V.  PERFORMANCE OF TYPE INFERENCE 

Process stage Bindings 

seeded by 

developers 

Bindings 

synthesized by 

inference 

Total number 

of bindings 

Field 28 64 92 

Method 64 65 221 

Locate variable  30 4 255 

 
In the table, the first column shows the stage of the bindings 

synthesis process. The second column shows the number of 
bindings we seeded acting as developers. The third column 
shows the number of type bindings automatically generated by 
inference. The fourth column shows the total number of 
bindings after inference at that stage. 

In this study, we maximized the possibility of parameter 
inference, i.e., if the parameters were bound with appropriate 
real-world types, these types were propagated to all arguments. 
For assignment inference, we listed eight assignments that we 
trust as permitted assignment for inference. 

In the field stage, we add 28 real-world type bindings to all 
suitable fields, and inference then generated 64 type bindings, 
mainly from return statement inference and assignment 
inference. In the method stage, we seeded 64 type bindings to 
suitable parameters in different method declarations, and then 
inference produced 65 bindings for arguments in various method 
invocations, primarily from parameter inference. In the local-
variables stage, we seeded 30 type bindings to local variables, 
and 4 bindings were generated by assignment inference. 

The project required 255 bindings in total, and 133 of these 
were generated automatically, i.e., 52%. This fraction suggests 
that the combination of some human effort and various forms of 
inference can yield reasonable performance in binding program 
elements to real-world types. 

D. Synthesis Of Real-World Type Rules 

We determined the number of real-world type rules that 
could be synthesized from every class. The necessary type rules 
were extracted from a small minority of the files. Most of the 
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project files yielded less than 20 rules, but a few yielded more 
than 50 rules each. 

In our hand-build, real-world type system for the Kelpie 
Flight Planner project, we created a total of 97 real-world type 
rules. The synthesizer mechanism extracted candidate rules 
from every class, and the total number extracted from individual 
files was 260. Many of these candidate rules are the same, and 
they can be reused in different methods of one class or methods 
across different classes. 

IX. RELATED WORK 

Concept location is related to the mapping of real-world 
entities to software [1, 7, 8, 11, 17, 18] but with the goal of 
improving program understanding. The use of parts of speech of 
terms in identifiers has been investigated as a means to extract 
information from the source code [2, 14] and to extract domain 
models [1, 18]. Extensions to support dimensional and unit 
analysis have been developed for several programming 
languages [10, 12] but without the general notion of 
documenting logic interpretations. 

Powerful extensions to the basic notion of type have been 
developed, in particular in the form of pluggable type systems 
[5, 9, 16]. Pluggable type systems are designed to provide 
greater flexibility in type mechanisms. However, the resulting 
flexibility remains within the mathematical framework of 
machine logic, and does not address the notion of deriving and 
exploiting type information from the real world. 

Type providers in F# extend the language so that the 
compiler can generate both new types and new code that 
leverage these types based on the structure of real-world data 
services [19]. Type providers in Idris extend this idea to 
languages with dependent types [3]. Neither F# or Idris address 
the general issue of defining logic interpretations.  

The Autocert system develops source-code constraints based 
on analysis of real-world information contained in Simulink 
models [4]. The checking that this enables is, in part, based on 
real-world information but does not enable the comprehensive 
checking that real-world types enable. 

X. CONCLUSION 

Preliminary results indicate that explicit interpretations 
based on real-world types provide a useful complement to 
available techniques for analysis of critical software systems. 
Despite the potential, the effort required to create the 
interpretation for an application might be a deterrent. 

We have introduced a system for aiding developers in the 
creation of interpretations. In an initial case study, we have 
shown that significant candidate material can be synthesized 
from informal documentation if programmers follow common 
rules for forming that documentation. 
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