

Is My Software Consistent With the Real World?

Jian Xiang, John Knight, Kevin Sullivan

Department of Computer Science

University of Virginia

Charlottesville, VA USA
{Jian,Knight,Sullivan}@cs.virginia.edu

Abstract— The actions taken by software should be consistent

with relevant constraints arising in the real world. For example,

computations should not mix values that are understood as being

expressed in incompatible physical units. To enable checking of

such consistency our previous work introduced: (a) a new

structure, the interpreted formalism, that is a software analog of

the notion of an informal interpretation from classical logic, and

(b) a practical implementation of the concept in the form of real-

world type systems. We reported preliminary results of the value

of interpreted formalisms in improving software dependability. In

this paper, we present details of a new case study, the results of

which indicate that: (a) interpreted formalisms can be applied to

large systems, and (b) the fault-detection potential is substantial.

Keywords— Case study, logic interpretation, real-world types,

software reliability

I. INTRODUCTION

Real-world constraints are those inherited from properties of
the real world. The laws of physics are an example. Clearly,
programs that interact with the real world, in particular cyber-
physical systems, must respect such constraints. Software
developers intend this to be the case but often lack mechanisms
to document and check such consistency. Software faults that
cause software to violate such constraints can thus go unnoticed.

Research in this area has tended to focus on checking
software’s consistency with very specific types of real-world
constraints, e.g. the consistent use of physical units and physical
dimensions [4],[9]. In prior research [14][1] in which we sought
a comprehensive approach, we introduced a new structure, the
interpreted formalism, that combines: (a) the logic of the
computation, i.e., the traditional notion of software, with (b) the
interpretation of the logic, i.e., an explicit representation of the
correspondence of software elements with the real world. The
interpreted formalism model provides a framework for
analyzing the consistency of software logic with the real-world
entities with which the logic interacts. Consistency of physical
units and of physical dimensions are special cases.

The interpretation component of an interpreted formalism is
machine readable, thereby allowing: (a) the precise definition of
constraints derived from the real world, and (b) the use of several
analysis techniques that enable automated checking of these
constraints. We conducted a preliminary case study of
interpreted formalisms on an open-source project, the Kelpie
flight planner[11], that is approximately 13,000 lines of source
code. This study illustrated the feasibility and potential benefits
of the use of interpreted formalisms [14].

In this paper, we present a second case study designed to
provide a more detailed assessment of the interpreted formalism
concept. In this case study, the concept was applied to a system
that provides a set of geographic services. The system, called
OpenMap [12], is an open-source project with approximately
158,000 lines of Java source code. The authors have no
connection to the OpenMap project beyond using it in this study.

We developed an interpretation for OpenMap and then used
it to analyze the code. This work revealed a substantial number
of faults that violate real-world constraints. To the best of our
knowledge, these faults were either unknown to the developers
or were reported by users of the system after deployment. This
case study indicates that the interpreted formalism concept: (1)
is feasible for large systems, (2) is effective in fault detection,
and (3) provides efficient support to reduce user effort.

II. INTERPRETATION AND INTERPRETED FORMALISM

A. Explicit Interpretation

Elements in expressions written in formal languages,
including programming languages, are purely syntactic. Without
interpretations, they have no real-world meaning. In current
programming practice, interpretations are generally documented
only in an informal, incomplete, non-computable manner, e.g.,
relying on identifiers, comments, and other documentation.
Such an approach leads to the possibility of: (a) real-world
semantics being defined and understood incompletely, (b)
connections between software and real-world entities being
underspecified, and (c) real-world constraints being violated by
software logic.

A carefully defined interpretation documents the real-world
meanings of logic elements in a precise manner. With an
explicit, rigorous interpretation, important characteristics of
real-world entities and the associated real-world constraints can
be clearly defined, and the real-world constraints that the
interpretation exposes can be checked automatically.

B. Interpreted Formalism

An interpreted formalism is a two-tuple comprising software
logic and an associated interpretation. The software is defined in
a manner appropriate for a system of interest. The choice of
programming language, coding standards, compiler, and so on,
are unaffected by the interpreted formalism structure. The key
difference is the addition of an explicit interpretation.

In our view, in the development of a particular system the
task is no longer just to develop software logic, but instead is to

develop an interpreted formalism, i.e., both the logic and an
explicit interpretation. Without the explicit interpretation,
whatever would be developed as “software” runs the risk of
failing to satisfy the desired correspondence with the real world
correctly, which is the entire purpose of the software system.

C. Realization: Real-World Type System

The concept of an interpretation is well established in logic.
It can take two forms: a mapping from logical terms to elements
of a formal domain (e.g., a mapping of the variables of a Boolean
formula to the domain {true, false}), or a mapping from logical
to the empirical real world (e.g., as in the interpretation of the
proposition, some swan is black, as being about the real world).
Our work is based on the empirical notion of interpretations.

The problem we face is that defining the content and
structure of an effective and complete interpretation for practical
software systems is a significant challenge. In our preliminary
design, the interpreted formalism design is based upon the
concept of real-world types [14]. An interpretation is: (a) a set
of real-world types, (b) a set of type rules, and (c) an association
of logical elements in code with real-world types. Real-world
types specify characteristics of entities in the real world accessed
by the software system, and real-world type rules specify the
constraints that should be observed by the software system.

D. Development of Interpreted Formalisms

In order to build an interpreted formalism, four artifacts need
to be developed: (1) the traditional software logic, (2) a set of
real-world types, (3) a corresponding set of real-world type
rules, and (4) a set of bindings of software entities to real-world
types. To facilitate the development of interpreted formalisms,
we have developed a synthesis framework that largely reduces
the effort required in developing these artifacts [1]. Our first case
study showed that the framework can substantially reduce the
effort required from users.

III. FAULT DETECTION BASED ON INTERPRETATION

Within a real-world type system, real-world type rules
document properties derived from real-world constraints. These
type rules should be observed in software systems that
manipulate real-world entities. This requires that:

 program statements satisfy real-world constraints;

 references from program elements to real-world entities
are precise, consistent, and correct;

 approximations in logical values caused by hardware and
discrete sampling are accounted for in an interpretation;

 and that runtime values satisfy real-world constraints.

We developed several analysis techniques in order to
establish these properties [14], including:

 checking real-world constraints;

 analysis of reasonable ranges of values for variables;

 identification of locations within the source code that
should be targeted for inspection for conformance to
real-world constraints;

 generation of executable assertions to check constraints
that are not statically checkable.

IV. CASE STUDY

The goals of this case study were to assess the following in
the context of a software system that is an order of magnitude
larger than that used in our previous study:

 the practicality of interpreted formalisms;

 the effectiveness of analysis for detecting faults;

 the effort required to develop interpreted formalisms;

 whether interpreted formalisms scale to larger systems.

We conducted a case study using a toolset that: (a)
implements all of the analyses described, (b) supports the
creation and use of real-world type libraries, and (c) includes a
framework to assist the user by partially synthesizing real-world
type systems and the bindings from real-world types to elements
of software. The toolset is described elsewhere [1].

A. Case Study Subject

OpenMap is a JavaBean-based toolkit for building
applications and applets needing geographic information. Using
OpenMap components, users can access data from legacy
applications. The core components of OpenMap are Swing
components that understand geographic coordinates. These
components allow users to show map data and manipulate that
data. The software system is 157,858 lines long, is organized as
92 packages, and is contained in 1,193 source files.

Some real-world semantics are important in understanding
the faults found in OpenMap, including the following.

Units and dimensions. The OpenMap software makes
calculations involving distances, heights, speeds, angles, time
and so on, and does so using a variety of units. Clearly, the
software is of the type for which real-world constraint checking
has the potential to discover units-related faults. The dimensions
and units are all real-world concepts that are defined in the real-
world type system within the support toolset by default.

Geographic and geocentric latitude. The real-world entity
latitude is used widely in the OpenMap software. The software
uses two types of latitude: geographic (geodetic) latitude and
geocentric latitude. The two types of latitude are different, as
illustrated in Fig. 1. This difference is crucial when the shape of
Earth is modeled as an ellipsoid.

Fig. 1. Two different types of latitude

Reference level of elevation. In OpenMap, the computation
of the distance between two objects on the Earth’s surface
frequently involves objects’ elevations. Elevations have
different reference levels. Two important levels are local ground

and mean sea level. The difference between the two should be
carefully handled when computations demand high accuracy.

We created a complete real-world type system for OpenMap.
We created real-world types for all real-world entities accessed
by the software. Variables and methods that access real-world
entities were bound to their real-world types. We defined type
rules to document relevant relationships between real-world
entities. Details of the real-world type system are as follows.

 Size. We reused the real-world type system created for
the Kelpie flight planner (previous case study), including
35 real-world types and 97 rules. We created one new
real-world type for OpenMap. Bindings of real-world
types to software entities cannot be reused, so we created
1,932 real-world type bindings for OpenMap. The toolset
was able to synthesize 803 type bindings (41.6%) after
1,129 binding (58.4%) were seeded by hand.

 Coverage. Variables in 196 source files were bound to
real-world types. Program elements in 232 source files
accessed real-world types. The other source files did not
interact with real-world entities, and needed no bindings.

B. Fault Detection

For simplicity, we use the term fault in this paper although
the analysis we describe can detect potential faults rather than
actual faults. Although very unlikely, violating real-world
constraints might be the programmer’s intent. In practice, the
detected faults are of two types: (1) violations of real-world
constraints (type A), and (2) unexpected uses of real-world types
(type B). The latter are consistent but potentially confusing uses
such as arise with implicit type conversion.

After setting up the real-world type system, we analyzed all
1,193 source files using both real-world constraint and
reasonable range analysis checking. Table I summarizes the
faults reported and the number of type A faults.

Real-world constraint checking reported 53 faults from 18
source files of which 24 were type A and 29 type B. Reasonable
range analysis reported 28 warnings from 18 source files of
which 12 could lead to runtime faults and 16 were type B.

Table I summarizes the source files that contain type A
faults, the number of type A faults, and the real-world semantics
that caused the faults. Every faulty statement in the software
included one or more real-world semantic faults.

TABLE I. REAL FAULTS FOUND BY CONSTRAINT CHECKING

Program files # type

A faults

Real-world semantic involved

RoadFinder.java 1 Latitude and longitude

Route.java 4 Units

Road.java 4 Units

Gonomic.java 1 Latitude and longitude

OMDistance.java 2 Units

TX7.java 1 Earth radius

LOSGenerator.java
(openmap/tools/terrain/)

3 Reference level

LOSGenerator.java

(openmap/layer/terrain/)

3 Reference level

GeoTestLayer.java 1 Geodetic and geocentric latitude

GeoCrossDemoLayer.java 3 Geodetic and geocentric latitude

QuadTreeNode.java 1 Units

Reasonable range analysis found 12 faults in 6 files. Table
III summarizes the faults:

TABLE II. REAL FAULTS FOUND BY REASONABLE RANGE ANALYSIS

Program files # type

A faults

Possible runtime faults

CADRG.java 1 Division by zero

Road.java 2 Out of reasonable range

Route.java 2 Out of reasonable range

OMDistance.java 1 Out of reasonable range

OMRasterObject.java 2 Division by zero

MercatorUVGCT.java 4 Infinite bound

The type B faults indicated by real-world constraint

checking are divided into two categories, improper usage and
false warnings, both of which are potentially useful. The
definition of improper usage was introduced earlier [14] and
refers to either: (a) a variable taking on more than one real-world
type but the same programming language type in different parts
of the program, or (b) the elements of an array having different
real-world types but the same programming language types.
Both practices could easily lead to faults. Table III summarizes
the improper usage and false warnings found.

TABLE III. FALSE WARNINGS AND IMPROPER USAGE

Analysis techniques # of improper

usage

of false

warning

Real-world constraint checking 25 4

Reasonable range analysis 4 12

C. Example Faults

In this section, we present examples of the faults identified
by the analyses we describe illustrating the types of issues that
arise through inconsistency of software with the real world.

Example Fault 1. Four type A faults were found in the source
file Road.java, all of which are misuse of units. The statement
below, for example, contains two type A faults:

 kilometers += GreatCircle.sphericalDistance(

 prevPoint.getLatitude(),

 prevPoint.getLongitude(),

 thisPoint.getLatitude(),

 thisPoint.getLongitude());

The first fault is that GreatCircle.sphericalDistance()
expects the units for the parameters to be radians, but the
arguments in this statement are all measured in degrees. The
second fault is that the return value of the function is an angle in
radians, which is inconsistent with the variable kilometers.

Example Fault 2. In source file TX7.java, one statement uses
Earth’s radius incorrectly. The statement is:

 distance = GreatCircle.

 sphericalDistance(lt1, ln1, lt2, ln2) *

 Planet.wgs84_earthEquatorialRadiusMeters;

This statement computes the distance between two points on the
Earth’s surface. Angular distance (or angle) multiplied by radius
yields distance on a great circle of a sphere. The function
GreatCircle.sphericalDistance() computes the angular
distance between the two points on Earth surface, with the
assumption that Earth is a sphere. However, the variable

wgs84_earthEquatorialRadiusMeters represents Earth’s
equatorial radius with the Earth modeled as an ellipsoid.

Example Fault 3. In source file LOSGenerator.java three
statements contain inaccurate computations caused by the use of
inconsistent reference levels of elevation. The three statements
are similar to this statement:

double cutoff = startTotalHeight +

 Planet.wgs84_earthEquatorialRadiusMeters;

All three statements intend to compute the distance between an
object and Earth’s center by adding Earth’s radius to the object’s
height above the Earth’s surface. The radius, here represented
by wgs84_earthEquatorialRadiusMeters, is the distance
between Earth’s center and Earth’s surface ground; but
variables endTotalHeight and startTotalHeight represent
objects’ heights measured above mean sea level. The two
reference levels are different.

Example Fault 4. In the file CADRG.java, there is a possible
division by zero in the following:

 dlon = lon2 - lon1;

 …

 deltaDegrees = dlon;

 …

 ret = pixPerDegree / (deltaPix / deltaDegrees);

The variable deltaDegrees represents the difference between
two longitude values, which could be zero.

As noted above, we categorize type B faults in the analysis
as either improper usage or false warnings. Most structures
identified as improper usage derive from statements that are
similar to the following:

 lat = Math.toRadians(lat);

 lon = Math.toRadians(lon);

On the left side of the assignments, variables lat and lon are
latitude and longitude values in radians, but the two variables
represent values in degrees on the right side. Essentially, lat and
lon have different real-world types in the same statement.

False warnings frequently involve conversion between
different real-world types. For example, two false warnings
were reported in these statements:

 double lambda = lon * Degree;

 double phi = Math.abs(lat * Degree);

In the first statement, variable lon, longitude in radians, is
assigned to variable lambda which represents longitude
measured in degrees. The second statement is similar. Detection
of unit conversion in source code such as this has been studied
by other research work [9]. Improper usage and false warnings
indicate fault-prone operations and are worth checking to make
sure that the entities referenced are being used correctly.

V. RELATED WORK

The interpreted formalism is a new concept that models the
relationship between the real world and the machine world.
Other researchers have modeled the relationship [1],[5],[9],[13].

Units consistency has been explored in different languages
[4],[9]. The interpreted formalism introduces general analysis
opportunities to check real-world constraints comprehensively.

Units and dimensional analyses are special cases of this
comprehensive analysis.

The realization of the interpreted formalism builds on type
theory. Pluggable type system and dependable type systems are
type systems support checking additional type rules [2][3][7].

VI. CONCLUSION

This paper presents results from a test of the practicality and
utility of the interpreted formalism concept by applying to a
large open-source project. This case study evaluated the
performance of the interpreted formalism concept in feasibility,
fault detection, and effort level. The results of this case study
suggest that (1) the interpreted formalism is fit for large software
systems, (2) error checking techniques are effective, and (3) the
synthesis framework greatly reduces the effort required by users.

REFERENCES

[1] Bhave, B., B. H. Krogh, D. Garlan and B. Schmerl. "View Consistency in
Architectures for Cyber-Physical Systems." In Proceedings of the 2011
IEEE/ACM International Conference on Cyber-Physical Systems
(ICCPS), Chicago, 2011, 151-160. IEEE Computer Society, 2011.

[2] Bove, A. and P. Dybjer. 2009. “Dependent types at work”. In Language
Engineering and Rigorous Software Development, edited by Ana Bove,
Luís Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto. 57-99.
Springer, 2009.

[3] Dietl, W., S. Dietzel, M. Ernst, K. Muşlu, and T. Schiller. 2011. “Building
and using pluggable type-checkers.” In Proceedings of the 33rd
International Conference on Software Engineering (ICSE). Waikiki,
Honolulu, 681-690. ACM Press, 2011.

[4] Hangal, S., and M. S. Lam. 2009. “Automatic dimension inference and
checking for object-oriented programs.” In Proceedings of the 31st
International Conference on Software Engineering (ICSE). 155-165.
IEEE Computer Society, 2009.

[5] Gunter, C. A., E. L. Gunter, M. Jackson, and P. Zave. 2000. “A Reference
Model for Requirements and Specifications.” IEEE Softw. 17, 3, 37-43.
IEEE, 2000.

[6] International System of Units, National Institute of Standards
Technology, Washington, DC.

[7] Markstrum, S., D. Marino, M. Esquivel, T. Millstein, C. Andreae, and J.
Noble. 2010. “JavaCOP: Declarative pluggable types for java.” In ACM
Trans. Program. Lang. Syst. 1-37. ACM press, 2010.

[8] Mars Climate Orbiter Mishap Investigation Board Phase I Report, 1999.
National Aeronautics and Space Administration, Washington DC,
November 10, 1999.

[9] Jackson, M. 2000. “Problem Frames: Analyzing and Structuring Software
Development Problems.” Boston, Addison-Wesley Longman Publishing
Co., Inc., 2000.

[10] Jiang, L. and Z. Su. 2006. “Osprey: a practical type system for validating
dimensional unit correctness of C programs.” In Proceedings of the 28th
international conference on Software engineering (ICSE). Shanghai, 262-
271. ACM Press, 2006.

[11] Kelpie flight planner for FlightGear.

http://sourceforge.net/projects/fgflightplanner/

[12] OpenMap. http://openmap-java.org/

[13] Parnas, D. L. and L. Madey. 1995. “Functional documents for computer
systems.” In Sci. Comput. Program. 41-61. Amsterdam: Elsevier North-
Holland, Inc., 1995.

[14] Xiang, J., J. Knight, and K. Sullivan. 2015. “Real-world Types and Their
Application”. In Proceedings of the 34th International Conference on
Computer Safety, Reliability and Security (SAFECOMP). Delft, 2015,
471-484. Springer, 2015.

[15] Xiang, J., J. Knight and K. Sullivan, 2016. "Synthesis of Logic
Interpretations," In Proceedings of the 17th International Symposium on
High Assurance Systems Engineering (HASE), Orlando, FL, 2016, pp.
114-121.

