Interpreted Formalism: Towards System Assurance

and the Real-World Semantics of Software

A Dissertation Presented to
the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment
of the requirements for the Degree
Doctor of Philosophy

Computer Science

by

Jian Xiang

August 2016

© Copyright August 2016
Jian Xiang

All rights reserved

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Jian Xiang (Author)

This dissertation has been read and approved by the examining Committee:

John C. Knight (Advisor)

Jack W. Davidson (Chair)

Kevin Sullivan

Hongning Wang

Houston Wood (Minor Representative)

Accepted for the School of Engineering and Applied Science:

Craig H. Benson (Dean, School of Engineering and Applied Science)

August 2016

ABSTRACT

Software systems, especially cyber-physical systems, sense and influence real-
world entities under the control of software logic in order to realize desired real-world
behaviors. Such software systems are based upon three essential components: (1) a
computing platform, (2) a set of physical entities with which the computing platform
interacts, and (3) the relationship between the first two components. These three
components seem familiar, and the third component seems trivial. In fact, the third
component, the relationship, is crucial, because it defines how logical values read and
produced by the computing platform will be affected by and will affect the various
physical entities.

Formally, the relationship between real-world entities and a computer system’s
logic is the interpretation of the logic. Software logic is necessarily formal, but, in
practice, interpretations are usually documented informally and incompletely, and
programmers treat elements in software logic as if they were the real-world entities
themselves. As a result, faults are introduced into systems due to unrecognized
discrepancies, and executions end up violating constraints inherited from the real
world. The results are software and system failures and adverse downstream

consequences.

This dissertation argues that, to mitigate such risks, software engineers should
produce not just traditional software, but a new engineering structure, the interpreted
formalism. The structure combines software logic with an explicitly documented
interpretation. Among other things, an interpretation documents differences that arise
inevitably between real-world values and corresponding logic values. An interpreted
formalism provides centralized documentation of a system’s software and its intended
relationship to the real world in an analyzable form, facilitating fault detection.

An implementation of the interpretation, real-world type, is introduced. For a
specific software system, an interpretation is composed of a set of real-world types, and
an interpreted formalism is implemented as a real-world type system combined with a
software system.

The pragmatics of the interpreted formalism concept are illustrated by conducting
case studies on open-source software systems of different sizes. The interpreted
formalism is evaluated from several viewpoints: (a) overall feasibility, (b) error
detection capability, (c) effort level required, and (d) scalability. The results of the case
studies suggest that (1) the interpreted formalism concept can be used on modern
software systems of different sizes, (2) the technology is capable of detecting real errors
that violate real-world constraints, and (3) the effort required from engineers for
developing and using the interpreted formalism can be reduced greatly by an automated

synthesis framework developed as part of this research.

ACKNOWLEDGEMENTS

| am very grateful to my advisor John Knight for his many contributions to the
thesis and his patience and encouragement in my ability to complete the research. My
life as a Ph.D. student was troubled by various kinds of problems. John never gave up
on me and led me through the dark time. He brought me back into the right direction
and saw me through to the end. | am greatly indebted to him.

My dissertation committee was extremely cooperative and insightful. Kevin
Sullivan provided me with excellent insights, inspired me with a lot of brilliant ideas,
and surprised me with his marvelous writing skills. Hongning sparked the synthesis
idea which | personally like most in the thesis.

| appreciate people from the department for their help and understanding. Kevin
Skadron warmed me up with his concerns. Wes Weimer guided me through the
requests from the engineering school. And Jan Cornell helped me with all the
administrative and financial issues.

Last and most importantly, | express my love and appreciation for my family. Dad
pushed me to accomplish the research; mom supported me with her love and tolerance.
My wife, Xiaoxi, totally changed my life and made me a happier, healthier, and more

responsible man.

CONTENTS

1.1 PROBLEM OVERVIEW: UNINTERPRETED LOGIC ...cucrerienniennieninnnsrnssrnnsrnssrnsssnnssenssrnnsns 2
1.1.1 UNINTERPRETED LOGIC ..euviuveureuieuieieetestessessessessesseseeseeseesessessassessessessesaesessessessessensensesseseesenns 3
1.1.2 CONSEQUENCES OF UNINTERPRETED LOGIC.c.veveueeueeuieneetiniesientenseseeneeneeseesessessessessesenseneeneesenne 4
1.1.3 IMPLICATIONS FOR RESEARCH.veuvetireesesesesesesesessesessesessensesansesensesessesessesessesessesessensssensesenes 6
1.2 THE TARGET CHALLENGE: AN EXPLICIT INTERPRETATION ..ceuuieesreussrnssrnssraessanssnnssenssrnssns 7
1.2.1 REAL-WORLD SEMANTIC INFORMATIONcveuverireressessssesesseseesassesessesessesessesessesessesessensssensesenes 7
1.2.2 RELATIONSHIPS BETWEEN REAL-WORLD ENTITIES AND LOGIC....veuveviniereeereieeesiesesseneseesesseneesens 8
1.2.3 REAL-WORLD CONSTRAINTS w.uvveueerereeresesesesessesessesessesessessesensesensesessesessesessesessessssensssensesenes 9
1.3 SOLUTION AND PREVIEW OF CONTRIBUTIONS ...ccteuuiensiranerenireesrenssensssnsssnsssnsernsennens 11
1.3.1 GOALS AND APPROACH OF INTERPRETED FORMALISMvevevererveresesessesessesensessesessesansesessesenens 12
1.3.2 INTERPRETED FORMALISMveutveuiteneatenesteneesensesessesessesessesessesessenessenessensesensesensesensesensesenses 14
1.3.3 THESIS STATEMENT ...vutteriteneesentsseneesenesseneeseneeseseesessesessesessenessenessenessenessensesensesensesensesenses 15
1.3.4 PREVIEW OF CONTRIBUTIONS ...cuvevtteuearenesteneeseneesessesessesessesessesessesessenessensesensesensesensesensesenses 16
1.4 ORGANIZATION OF THE WORK ..ccuureeureunreeireeiieesiresirasirasirasirsesisesiensssnsssnssrnssrnsennnns 16
2. LOGICINTERPRETATIONccctuiiueiruiineirunieniinieesianisesiassesnassessassssssasssnns 19

2.1 THE CONCEPT OF LOGIC INTERPRETATION .vueeeeerererecesserersensesreresesessesasnsssseresasassnsenns 19

2.2 IMPLICIT INTERPRETATIONteuuuireussrnnssrensssrsessrsnsssrsnsssrasssnsnsssnssssssnsssnsnsssssnssnnnes 20
2.3 EXPLICIT INTERPRETATION c.uuteeuureusssranssrensssrsessrsnsssmsnssssasssrsnssssssssssnsssnsnsssssnssnenes 23
2.4 ADVANTAGES OF AN EXPLICIT INTERPRETATION ..cuureeenirensnsranssrennssrsnssrsnsssnsnssssanssnnnes 25
3. INTERPRETED FORMALISMcceiiuiimniruniniiniinesienieesiainesiesresiasssssassnens 27
3.1 OVERVIEW OF INTERPRETED FORMALISM ...cc.ctuuirancrnnsiensienssenssrnssrnssrssssasssnsssssssrnsens 27
3.2 A NEW DEFINITION OF A SOFTWARE SYSTEM ..ccuuirenenirennrennsinensisesessrensssmsnsssesnsenenes 29
3.2.1 A GENERAL FORM OF SOFTWARE SYSTEMS.....cveuveveeereierersesessesessesessensssessesensesensesensesessesensens 29
3.2.2 A NEW FORM OF SOFTWARE SYSTEMSeveuirrereereneesensesessesessesessesessensssessesensesensesessesessesessens 30
3.3 THE STRUCTURE OF INTERPRETED FORMALISM ..c..creeuuirennrinnsirennirenesinensismsnsisennsenenes 32
3.3.1 A REAL-WORLD SPECIFICATION ...veuveurverereseeseseesensesessesessesessesessesessensssessesesessssesessesessessnsens 33
3.3.2 A RELATIONSHIP SPECIFICATION w.veuveueverereserseseesensesessesessesessessssesessensssensesesesessesessesessesessens 34
3.4 AN INTERPRETED FORMALISM EXAMPLEccuciuuiianiinnsiensienssrasrnssrnssrsessasssssssnsssrnsens 37
3.4.1 LOGIC COMPONENT ...veuvetessetetesesesessesessessesassesessesessesessesessesessesessensesessesensesesesensesessesensens 37
3.4.2 INTERPRETATION ...viuveteueetesesessesessesessesessessssassesensesessesensesessesessesessensesessesensesensesensesessesensens 38

4. REAL-WORLD TYPE: AN IMPLEMENTATION OF THE INTERPRETED

FORIMALISIVMI . .uciiiitieieirerietetereressecesesessasaseressssscnsessssasnsesessssssesessasssnsesassnes 41
4.1 REAL-WORLD TYPES tuveeereerereceeeerereceressesscasesserosssesssssssssssssssssassssassssssssesasassssases 42
4.1.1 THE CONCEPT OF REAL-WORLD TYPES .. eeeeeeeueeeeeeeeeeeseaeeressaseeessanneeeesaneressaneeessanneeesasnneees 42
4.1.2 THE STRUCTURE OF REAL-WORLD TYPES....ueeeeeeeeeeeeeeeeeeseeseeessaseeeesaseeessanenessanneeesasnneeens 42
4.1.3 REAL-WORLD TYPE EXAMPLE «..veeeeeeeeeeeeeeeeeeeeeeeeesaeeeessaeeeessanneeeesanneeeesanneeesannneeesaanneeen 46

Vi

4.2 REAL-WORLD TYPE RULES vuvuteeeeeererecesererecnsesseresesessesesssssssrosssassssessssssssesssnssssases 49

4.3 REAL-WORLD TYPE SYSTEM .eeuuiieeuuireeserenessrensimensemmasssmsnsssmssssrensssrsnsssrsnssssssssnenss 51
4.3.1 REAL-WORLD TYPE BINDING ...c.eeuveueeuietirtertentesteiesteseesessessessessessensessesessessessessessensensensessesens 52
4.3.2 REAL-WORLD TYPE SYSTEM ..uveuveuteueereesistessensesseseseessesessessessessessensessessssessessessessessessensessesens 53
4.4 REAL-WORLD TYPES AND PROGRAM STRUCTURES. .ccuuireeeirennssrnnssrenessrensssmsnssssssssnenss 54
5. ESTABLISHING PROPERTIES USING INTERPRETED FORMALISM.............. 57
5.1 PROPERTIES BEING ESTABLISHED .c..ceuuieeuieaniranerenereesrensrensensssnssrneersesssssssnsssnssensens 57
5.2 ESTABLISH PROPERTIES ..ceevuuuesssssssrrneesnsnessssssssssnmesnsssssssssssssmsssnsssssssssssssssssnsssssss 59
5.2.1 REAL-WORLD CONSTRAINT CHECKING ...veuveueeueereesersessessessensensenseneenessessessessessessensensensenseneesens 60
5.2.2 RANGE AND REASONABLENESS ANALYSIS ...cuveuvereererreasessessessessessessesessessessessessessessensessensesasens 61
5.2.3 ASSERTION GENERATION FOR RUN-TIME ASSURANCEuuuvririeeeeiiiinriieeeees s seiineneeeee s e s 62
5.2.4 TARGETED INSPECTION . .cvtuteuiteretenentenestentesenessesesessesensesessesessenessenesseneesensesensesensesessenensens 63
6. DEVELOPING INTERPRETED FORMALISMSccciviiruiiuirniinineninsnennnnnnens 65
6.1 SOURCES OF DEVELOPMENT ...cuureuuieunieenseasirasiresernesreesssessensssnssrsssrsesssssssssssnsssnsens 67
6.1.1 EXISTING CONTEXT DOCUMENTATION w.uveuteueeueereerensessessessensensenseneenessessessessessessensensensenseneesens 67
6.1.2 EXISTING REAL-WORLD TYPE SYSTEMSvuveuirrenerrenesreneereneesessesessenessenesseneesensssensesensesessenensens 68
6.1.3 EXISTING SOFTWARE APPLICATION IMATERIALSveuvetineereeeneseenessenessenessenessensesensssensesessenensens 69
6.2 DEVELOPMENT OF REAL-WORLD TYPE SYSTEMS FROM APPLICATION MATERIALS............. 69
6.2.1 SYNTHESIS OF INTERPRETATIONS ...cuvevtutenetenerteneesensesessesessesessesessenessenesseneesensesensesensesessenensens 70
6.2.2 SYNTHESIS OF REAL-WORLD TYPESeveutienirieneeteneetetesenseseseesessesessenessesessensssessesessesessenensens 71
6.2.3 SYNTHESIS OF REAL-WORLD TYPE BINDINGS.....cveveeetiieriienereenenienesienessenesseneeseneesensesessenensens 77

VIl

6.2.4 SYNTHESIS OF REAL-WORLD TYPE RULESeuuuuuiiiuuuinniiii s 82

7. PROTOTYPE IMPLEMENTATION.....ccccitiiuiiinireiininninesiesieesnassesiassasnanes 85
7.1 DESIGN OF THE JAVA PROTOTYPE..c..iteuuireuniireesirenesimsnsismasssmmasssmssssrensssnsnsssrssssssnes 86
7.1.1 USE OF THE PROTOTYPE ...veuveuiieuitesestesessesessassesessesessesessesessessssessssessssessssensesansesensesessessnsens 88
7.1.2 TYPED PROGRAM ELEMENTS ...euveviveuiteseeteseeteeesessesessesessesessessssesessessesessesessessssesessesessesssens 91
7.1.3 TYPE CONVERSION ...vviuvereuserisesesesesseseesessesassesensesassesesesessessssesessessasessesessesansesensesessenssens 92
7.1.4 POSSIBLE ERRONEOUS STATEMENTS ...cuveueveriereseesessesesesessesessessssesessessssessesessessssesessesessessssens 94
7.2 JAVA PROTOTYPE USER INTERFACES .cuuceuuienniraneranirensrenssenssensssnsernesrsesrsssssnsssnsennsens 95
7.2.1 POPUP MENU: CIM TYPE CHECKER .vvvveueveseereseesesesesesessesessesessesessessssessesessessssessssesessesssens 98
7.2.2 POPUP MENU: CIM TYPE FACILITIES 1.vvuveueteriereneeseeesesesesseseseesessesessenessessesensesessesensesessenessens 99
7.2.3 ECLIPSE VIEW: CM TYPE VIEW c.viuieviieeiietissesestesessesesseessesessessesesassessesessesessessssessssensesenes 101
7.2.4 ECLIPSE VIEW: CM TYPE RULES VIEW....cutvetirieresrenesiesesteseesesesessesessesessesessesessesessessssensesenes 104
7.2.5 CONCEPT EXPLICATION VIEW ..euvevinveriierestesessesessesesseseesesessesesensesessesessesessesessessssessssensesenes 106
7.2.6 DIAGNOSE VIEW ..veuveveuieteneeretesessesessesessesessesessessssesessessssensesensesessesensesessesessessssensssensesenes 106
8. EVALUATION OVERVIEWcccovuiiiniruiinniiniineiianieiianieesiesisesiassesrasssssses 109
8.1 INTRODUCTION ecuuireuuerenenirenessmenssrensssmsnserenesenensssrsnsssessssmsnsssessssrensssrenssssnnssnes 109
8.2 THE CASE STUDY SUBIJECTS ..ceeuuireuuurrenssmenssseneserensssrsnsssmasssmsnssssssssrsnsssrsnssssnsssnes 111
8.3 EVALUATED PROPERTIES..cuuiteuuutrensirennssmensirenesimensssmsnsssmesssmsnsssesessrsnsssrsnsssensssnes 111
8.3.1 FEASIBILITY vueveueteueeseseeseseesessesessesessesessesessesessesessesessessesassesensesessesesesessesessesessessnsensesenes 112
8.3.2 ERROR DETECTION CAPABILITY .cveuveviseeesesessesessesessesessesessassesensessssesessesessesessessssessssensesenes 115
8.3.3 EFFORT LEVEL tuveuvrteueeresieteseesestesessesessesessesessesessessssesessessssansesensesessesessesessesessessssensssensssenes 117
8.3.4 SCALABILITY.cueuveutteueetesesteseesestesessesessesessessssesessesssseseasessesassesensesessesessesessesessessssessesanessenes 119

VIl

9. CASE STUDY: KELPIE FLIGHT PLANNERccccottuuiiiimnirinnnininnnininnninennnens 121

9.1 SYSTEM OF CASE STUDY ...uiiirnnnniirennnsninnennnsiisienssisressssessessssssstesssssssessssssssennsss 121
9.1.1 BASIC INFORMATION w.evuvtueaeteseneneeteseeneetesesessesesenessesesesessesesenesseseseneasesesenessesesenessesesennans 121
9.1.2 IMPORTANT REAL-WORLD SEMANTICS ...c.vvuiueeeteneneeetesenesssesesessssesenessesesenessssesenssssseneneaes 122
9.2 DATA COLLECTED AND ASSESSMENT ..ceeuuereesresescrensssrensestassersnsesessserenssssensessansnes 124
9.2.1 FEASIBILITY ..utututteuenitetesesesseteseseaseseseseasesesesessesesensesesesenssseseseneaseseseneaseseseneasesesenssssseseneans 124
9.2.2 ERROR DETECTION CAPABILITY ...ueutteuinieetesesersesesenessesesenessssesenessesesenessesesensssesesensesesesenenns 127
9.2.3 EFFORT LEVEL w.uvuvuiuiiteuinistetesestetetesetssesesesessesesenessesesenessesese e et eseseneasesesenessesesenesseseseneaes 134
10. CASE STUDY: OPENMARPcuuiieiiiiiiiiiiiiiteiiieiiseineiseireessassasneannes 135
10.1 SYSTEM OF CASE STUDY ..urteuuirennnsrenscrennserensstensistasssnenssstsssesessssresssstsnseseassenenns 135
10.1. 1 BASIC INFORMATION ...uvuvvvssniststststesetsesessssssesesesesesesesesesesesesesesesesesenssssnsssssssssssesesns 135
10.1.2 IMPORTANT REAL-WORLD SEMANTICS ...ceeviiiiiiiiiiiiiiiiiiiiesiiiee s snineessnnse s snnseessssnsessssnnnes 136
10.2 DATA COLLECTED AND ASSESSMENT ceuuureeeserensssrensiseanssrenssrsnseressserensssssnsesesnsenenns 138
F0.2. L FEASIBILITY cetetiiiiiteetteee ettt e s st e e e s s e a e e e e e e s s s s b e se e e e e s s s e snsbaaeeeeeessesnnrrneeeas 138
10.2.2 ERROR DETECTION CAPABILITY ..uuviiiiiiiiieiiiiiiesiiiie st ssns s saaas e ssanas e s snnas 141
T0.2.3 EFFORT LEVEL uuiiiiiieeetiieeiiieite e ettt e sttt e e e s s s e e e e e s s s aae e e e e e s s e snnnenaeees 157
10,24 SCALABILITY. c..ttttaeteteueseeeeteseesaeseseesaesese e sbebese e ebebe st et ebes e st s ebeben e et sbebene s ebeseneasebenenensenas 163
11. CASE STUDY: PRAGMATIC APPLICATION....cccccitmuiirinniinnnniineniinennnnnenes 167
11.1 PHASE #1: FAMILIARITY. ceeeeuuirennirrensireneserennserensirtsnssrenssstsnseressserensssesssesenssenenns 168
11.2 PHASE #2: EXPLORATION ..ceuurenunrrensirennsirenseneasirtsnssrensssssnseresssersnsssesnsesenssenenns 171
11.3 PHASE #3: RELEVANCE ...uvteuuirenesrensirenescrensstensistssssrenssstssseressserensssesssesesssenenss 176

11.4 PHASE #4: FULL UTILIZATION ..eucrerresreniaesrestossassensressastassssssassassassssssassassasssnssasse 178

11.5 OBSERVATIONS ...ceuuuireunusranssrsnsssrsnssrsnessrsnsssmsssssrssssmsnsssrssssssssssrsnsssrsnssssanssssnns 180
12. CASE STUDY: THE SYNTHESIS FRAMEWORKccccotvirirniirniininennnnnnans 183
12.1 INTRODUCTION cuuieuuieensrussrassrassrasssssssssssrsssrassrassrssssossssnsssnsssnsssasssassssssssnssrnssss 183
12.2 SYNTHESIS OF TYPE CANDIDATES ...cceuuereeeserenesereasssrenssrensssmssssreneserensssrsnsssssnsenenns 184
L2, 2 L AN ALY SIS it 186
12.3 SYNTHESIS OF REAL-WORLD TYPE BINDINGScteuuiteenirenniiinnnireneiinensisrensirennsenenns 188
12.4 SYNTHESIS OF REAL-WORLD TYPE RULEScccuiiteeniiinnnirenniiieenireneireneimensisiensenenns 190
12.5 PRAGMATIC APPLICATION WITH SYNTHESIS ..ccuuireuniremenirennismensireneinensismensesennsenenns 190
12.6 EFFORT LEVEL ASSESSIMENT ceuuutteuuiteasireneserenessrensisesnssrsnsssmsnsereneserensssrsnsssensssnenns 192
13. RELATED WORKcuiiiiiitiiiriiiireiiiiteieireiiiestesisesiessesrasssesrassssssassnnns 195
13.1 MoODEL THE RELATIONSHIPS BETWEEN THE REAL WORLD AND THE MIACHINE WORLD...... 196
13.1.1 FOUR-VARIABLE IMIODEL.....cveueteneetereenesenesienessenessesesseseesensesessesessesessenessenessenesseneesensesenees 196
13.1.2 EXTENDED FOUR-VARIABLE IMIODEL ..cceeeeeieiiieieieieieieeeseeeseeeaaaeeeeens 197
13.1.3PROBLEM FRAME AND REFERENCE IMODEL......cceetiiiiiiiiiiieeiieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaeeeeeeeens 198
13.1.4 CYBER-PHYSICAL SYSTEM ...uvtiutetieeresuesessesessesessesessessssassesessesessesessesessessssessssensssansssensesenens 199
13.2 TYPE SYSTEM .euuiimuuirenniirnnnirensiimeesirisesirenesimeasismesssmsassmsssssessssrsnsssrsnssssanssssnns 199
13.2.1 CONVENTIONAL TYPE SYSTEMS...ueuveveuererreressesessesessessesassesesesessesessessssessssessssesesasesensesensns 200
13.2. 2 ENHANCED TYPE CHECKER ...veuvevisteteseesesesessesessesessessesassssessesessessssessssessssensesensesansesensessnsns 200
13.3 CHECK REAL-WORLD CONSTRAINTS .ccuuireerirenessrensssmnnssrsnsssrsnssrenessrensssrsnssssanssnsnns 202
13.4 IMPROVE LOGIC UNDERSTANDING AND IMAINTENANCEccutreerirenescrenessrenssennssnenns 203

13.4.1INTEGRATION OF SEMI-FORMAL AND FORMAL NOTATIONS ..cceeiieieeeeeeeeeeeeeeeeeeeee e 203

13.4.2 VISUALIZATION OF FORMALISMuvvirieuiresessesessesessessesassesessessssessssesessessssensssesesansesessesansns 204
13,4, 3 ONTOLOGY ..t ieetttttuieee et eettttiuaesseeetttaat i aeeeeeeettataa e sseesaaesasaasaeeeaaesssanssesseesenssansseseeesensseen 205
13.4.4INTENT SPECIFICATION ..eviuteueneereneeseaesessesessenesseseesesesseseesensesessesensesessesessensesensesansasensesanses 205
13.5 SYNTHESIS IMIECHANISMS....ccuiteuieeiieeiressrassrassrassransionsssnsssassrnsssssssassssssssnsssnsses 206
13.5. 1 TYPE PROVIDER.....euerteueeteneetetesesesesaesessesessesessesessensssassesansesessesensesessessssensssensssensesensesanses 206
13.5. 2 TYPING SYNTHESIS.c.vveueerereerereesesesessesessesessesessesessessssassesensesessesessesessessssenessensesensesensesenses 207
13.5.3 CONCEPT LOCATION ..vuvevineeeeneeteneesesiesessesessesessesessesseseseesensesessesessesessessssensssensesensesensesenses 207
13.5.4PARTS OF SPEECH .uvuveueeteneeteeesesesessesessesessesessesessessssessesensesessesessesessessssensssensesensesensesanses 208
13.6 CONTEXT REPRESENTATION AND REASONING....ccuiteuireeireeirenienirnernerneinensseneennens 209
13.7 UNCERTAINTY OF HARDWARE AND SOFTWARE ...cccteueieesienssenssrnssrnssrssssssssasssssssrnssns 209
14. CONCLUSION.....cituiiiiiiniiiiireitiireiteeiresisesreisestesisestasssessassssssassssssasssnns 211
14.1 OVERVIEW...teuuiremunirenniiensirmnesimensirtneserenssemeasssmssssseasssmsssssessssrsnsssrsnsssssnsssenns 211
14.2 CONTRIBUTIONS...ceuuireuureenssrensssmenssrenesersnsssrsnsssesssssenssssssssssssssrsnsssrsnssssanssssnns 213
14.3 LIMITATIONS .eeuuirenenirennirennsirensismensirenesereassereasssmesssressssrsssssessssrensssrsnsssssnsssenns 215
14.4 FUTURE WORK ...ceuuiieuiinnirntirneiieeiieeiieeisasiresireeireesieesssnsssnssmnssrsesssssssssssnsernsens 216
(=] 121 0 1 2921 o o R 217

Xl

X1

LIST OF FIGURES

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1. Source code with and without an ad hoc interpretationccccoe...... 4
2. Overview of interpreted formalismcccooveiiiiiiiecii e, 14
3. Interpretation as an abstraction from concrete to abstract........................ 20
4. Examples of insufficient interpretationcccceeveeveece e, 21
5. An interpreted formalism combines logic with an explicit interpretation28
6. The basic elements of a software Systemccccccevvveviiievii v e, 30
7. The basic elements of a software system with an interpretation.............. 32
8. A real-world type definition for a coordinate system...........c.cccceeveeveenen. 47
9. A real-world type definition for x and y axisc.cccceevivievievecic s, 48
10. A real-world type definition for Z axiS..........ccccovevveviiieie e 49
11. Example type rule definition.cccoeiieiieiiie e 51
12. Real-world type SYSIEMccooviiieiice e 53
13. Development of interpreted formaliSms.........cccccoeeviiie i, 66
14. Overview of real-world type system synthesis framework.................... 71
15. Synthesis of candidates for real-world types..........cccoocevvveieiiieiieenne, 73
16. Type binding inference from parameters to arguments................c....... 78
17. Synthesizing real-world type rules..........ccccoovveviiiiiiie i, 83
18. Design of the Java PrototyPecocvevereriiniesie e 87

X1

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

19. The Java ProtOtYPEcceiiriiiieieeieie st 96
20. Popup menu: analysis teChNIQUES...........ccccuvieieiiieceeeee e, 98
21. Popup menu: synthesis framework mechanisms...........c.ccccoovveiienne. 101
22. VIEW: CM YPE VIBW ...ttt 102
23. Wizard: CM tyPe WIZAIUccueiviiiiiiiiisiieeseeee e 104
24. View: CM type rule VIBWcccoiiiiiiiiiieceee e 105
25. Wizard: CM type rules Wizardcocvvevieieiinenceseseeeeeeeeee 105
26. View: concept eXpliCatioNcccceviiiiiiiiieecee e 106
27. VIeW: AIAGN0SE VIEBWoiueiiiiiieieite sttt 107
28. Screenshot of Kelpie flight planner...........ccoeoeiiniiince 122
29. The VelOCItY SUITACEooiiieeece e 123
30 . Snapshot of OpenMap SOTTWAIEccccvvviirieieee e 136
31. Two different types of latitudecoceevvieiiiiie e 137
32. Number of potential attributes for candidatescccocveververriinnnnnn 184
33 . Pragmatic application with synthesis framework.............c.c.ccecveurnnn 191

XV

LIST OF TABLES

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

Table.

1. Example real-world SemanticC...........ccccoveveiieieeie e 44
2. Analysis techniques provided by real-world type system 60
3. Prototype as EClipSE RCPccvooieiiceceece e 96
4 . Real errors found by real-world constraint checkingc..c....... 128
5. Possible errors found by reasonable range analysiscccoc...... 130
6. Errors reported by analyses in OpenMapc.ccoeveiveiieie e s, 141
7. Real errors found in OpenMapcccocveiieieeicieece e, 142
8. Real errors found by real-world constraint checking 142
9. False warnings and improper USAQE.........ccuevveevereerreeieeseesieeseesreennean, 143
10. Statements found by reasonable range analysisccccccccvveneane. 152
11. Sequence of binding operations for OpenMap........c.ccceevevevivenenne. 159
12. Software Size COMPAIISONicivieiieeirieiie e e re e 164
13. Real-world type system COMPAriSON..........ccccvevvveereeiiieeieesieesiee s 164
14. Effort level COMPAriSONccoviiieiie e 164
15. Results of error detection COMParisoNccceveveeiiieeiieiiieciee s 165
16. Interpreted formalism for programs of different sizes...................... 173
17. Results of analyzing the three programs directlyccccccvevvvenenn 174

XV

Table. 18. Stats of interpreted formalism for analyzing units of measurement.177

Table. 19. Real errors found with full utilizationcccocooiiiiiicicn, 179
Table. 20. Selection based on frequency of major terms..........cc.ccoevvvvvveieinenn. 185
Table. 21. Selection based on number of potential attributes...............cccceevnee. 186

Table. 22. Connections between candidates and known real-world types based on
(01021 o) o 0 U ORPRPSTRRSR 187
Table. 23. Connections between candidates and known real-world types based on
(01021 o) OO PRPRPRRRR 188

Table. 24. Performance of real-world type binding synthesis...........cc.ccccceevenee. 189

XVI

CHAPTER 1

1. INTRODUCTION

Software systems, especially cyber-physical systems, sense and change real-world
entities under the control of software to realize desired real-world behavior. Such
software systems are based upon three essential components: (1) a computing platform,
(2) a set of physical entities with which the computing platform interacts, and (3) the
relationship between the first two components. These components seem familiar, and
the third component seems trivial. In fact, the third component, the relationship, is
crucial, because it defines how logical values read and produced by the computing
platform will be affected by and will affect the various physical entities.

Such relationships, however, are usually defined in an ad hoc manner lacking in
rigor, yet a misunderstanding of the relationship could lead to serious consequences [6,
53]. Specifically, the relationships between elements in software logic and physical
entities in the real world are under-specified, and programs treat elements in logic as if
they were the real-world entities themselves. As a result, faults are introduced into

systems due to unrecognized discrepancies, and executions end up violating constraints

Chapter 1 Introduction

inherited from the real world. The results are software and system failures and adverse
downstream consequences.

Formally, the relationship between real-world entities and a computer system’s
logic is the interpretation of the logic. This dissertation examines some of the
challenges inherent in defining and leveraging the interpretation of software.
Specifically, it describes and evaluates the mechanisms by which interpretations can
be explicitly defined and utilized. Instead of developing traditional software, this work
advocates developing a new explicit structure, the interpreted formalism that combines
rigorous methods and notations for defining interpretations for software. An
interpretation will include information such as details of differences between real-
world values and values in logic that arise inevitably in sensor systems. The interpreted
formalism provides centralized documentation of a system’s software and its
relationship to the real world in an analyzable form thereby facilitating fault detection.

The remainder of this chapter establishes the context of the work and previews the

idea of the interpreted formalism and contributions.

1.1 PROBLEM OVERVIEW: UNINTERPRETED LOGIC

The need to define the relationships between elements in the software and entities
in the real world explicitly arises because software is a logic function with no
interpretation. The correctness of uninterpreted logic is not comprehensively checked.

This section introduces the problems of uninterpreted logic that motivate this work.

Chapter 1 Introduction

111 UNINTERPRETED LOGIC

The notations that are used for defining software are formal languages. High-level
languages, assembly languages and machine languages are all formal, and all have the
property that, as formal languages, they have no inherent real-world meaning, i.e., the
logic is uninterpreted. For any statement in a formal language to be anything other than
a purely syntactic entity, an interpretation has to be added to the logic. The
interpretation defines the intended meaning in the real world of elements of the logic.
In doing so, the interpretation exposes the logic to constraints and invariants that derive
from the real world, such as the laws of physics. To be valid, the logic must conform
to these constraints and invariants.

In practice, the interpretation of a software system is always present but usually
documented in an ad hoc, informal and sometimes implicit manner using casual
techniques such as “descriptive” comments, “meaningful” identifiers, and design
documents. The execution of software is unchanged by the replacement of identifiers
with random strings, and the removal of comments and design documents. The logic is
unaffected by these changes, but human understanding of what the logic does is mostly
lost.

As an example, Fig. 1(a) shows a block of Java text taken from an open-source
library. The meanings of the values used by the parameters of the various functions are
documented in part by the names of the parameters and in part by the comments. The
block of Java text with the identifiers replaced with random strings and the comments

removed is shown in Fig. 1(b). This version of the Java text compiles correctly, and

Chapter 1 Introduction

execution of the software is unaffected by the changes. Although the logic function is
unaffected, human understanding of what the logic does is almost destroyed. In the
function originally named getmonth(), the comment explaining that the encoding of
the months of the year used by the function is 0 — January, 1 — February, 2 — March,

etc. is essential. That particular encoding is unusual and impossible to discern from the

code.
/* Returns the year after 1900. */ public int Inmgtyu() {
public int getYear () { if (!wpou88kj)
if (!expanded) xcvbbhu7l () ;

expand () ; return tm_ Inmgtyu;}
return tm year;}
public void tyugfds (int v) {
/* Sets the year. */ tm ugfdsrew = v;
public void setYear (int v) { ascboi9jjk = false;}
tm_year = v;
valueValid = false;} public int sdgtyu() {
if (!wpou88k7j)
/* Returns the month. ie: 0-11 */ xcvbbhu71 () ;
public int getMonth() { return tm_ sdgtyu;}
if (!expanded)
expand () ;

return tm mon;}

(@) (b)

Fig. 1. Source code with and without an ad hoc interpretation

1.1.2 CONSEQUENCES OF UNINTERPRETED LOGIC

For many software systems, especially safety-critical systems, the assurance of

their correct operation depends on the interactions between real-world entities and

Chapter 1 Introduction

software being complete and correct. Unless the interactions are precisely that which
is intended and known to be so, doubt in the correctness of the effects of such systems
is inevitable. The logic in a software system should respect invariants that derive from
the real world that the system senses, models, and affects. For example, software that
computes physical quantities should respect measurement units and physical
dimensions, such as those defined by the ISO/IEC 80000 standards.

The failure of software to observe real-world invariants has been a causal factor in
various accidents and incidents. In 1999, the Mars Climate Orbiter was lost because
different parts of the software system used different units of measurement [53]. One
piece of the ground software produced outputs using imperial units (pound-seconds),
while a second system expected results to be in metric units (newton-seconds). More
recently, in 2013 a delay in berthing Orbital’s Cygnus spacecraft with the International
Space Station (ISS) occurred because Cygnus and the ISS used different forms of GPS
time data; one based on the original 1980 ephemeris, and the other based on an
ephemeris designed in 1999 [6]. The two forms have a difference of exactly 1024
weeks. In both of these examples, real-world entities were affected by operations
defined in software in ways that made no real-world sense, i.e., the systems failed to
observe real-world invariants because the essential interaction was improperly defined.

Logic with no interpretation or casual interpretation is unsatisfactory to assure such
correctness. Interpretations described by casual techniques are unstructured,
incomplete, and unorganized. Such interpretations are usually incomplete or

insufficient because:

Chapter 1 Introduction

e Important characteristics of real-world entities are undocumented or are documented

incompletely, informally, and implicitly.

e The approximations inherent in finite-precision representations in the logic and in

the sensing of values from the real world remain under-specified.
e Values used in the logic are provided by noisy, mis-calibrated sensors.
e Sensor and related failures could provide erroneous values for the logic.

As a result, uncertainties and assumptions are introduced by the software logic, and
crucial, non-trivial relationships between software elements and real-world entities
remain under-specified. Even more frequently, the completeness and correctness of the
interaction are not checked comprehensively. Invariants derived from the real world

are stated and enforced either in ad-hoc ways or not at all.

1.1.3 IMPLICATIONS FOR RESEARCH

Accidents and incidents such as cited those above suggest that substantial
reductions in safety-critical defects might be achieved if developers could
systematically enforce real-world invariants in software logic. Thus, the implication is
that if we could thoroughly understand and trace real-world entities in software logic,
we could have the opportunity to improve software reliability by reducing the potential

violations of real-world invariants.

Chapter 1 Introduction

To be able to understand and trace real-world entities, elements in software logic
need to be properly interpreted. An explicit and comprehensive interpretation should

fulfill several requirements:

e The precise semantic information of the real world including all relevant

characteristics and invariants are clear.

e The constraints and invariants of real-world entities are explicit and can be used to

check the software for violations.

e The differences between real-world entities and their machine-world realizations are

documented and analyzable.

e Specific analysis techniques derived from the real-world context can be developed

and employed.

1.2 THE TARGET CHALLENGE: AN EXPLICIT INTERPRETATION

Various challenges arise when designing an interpretation. To meet the

requirements listed above, in this section, these challenges are discussed.

1.2.1 REAL-WORLD SEMANTIC INFORMATION

Real-world semantic information is vital to software systems. The Mars Climate
Orbiter was lost due to a misuse of units of measurement, and berthing Cygnus with

ISS was delayed due to inconsistent forms of GPS time data, which were based on

Chapter 1 Introduction

different ephemerides. The semantic attributes of units of measurement and ephemeris
were the causal factors in the accident and incident.

Developers frequently treat the real-world semantic attributes of entities that
computers manipulate informally. Software systems typically represent real-world
entities as variables, values, or instances. Such program elements themselves have no
inherent real-world meaning, so the real-world meanings must be added. In many cases,
programmers are admonished to use “meaningful” identifiers and to comment code
liberally. However, relying on identifiers and comments is an unsatisfactory approach.
Identifiers are limited by their formats and styles; comments are unstructured and
disorganized. There is no existing structured approach to determine what comments
should be added, or whether comments are sufficient. Important real-world semantic
information could be ignored or misunderstood.

In order to deal with this challenge, the goal of the work is to describe the real-
world context, e.g., the semantics of all real-world entities explicitly. An interpretation
should be able to convey real-world semantic information from one individual to
another unambiguously. An interpretation needs to provide complete and

comprehensive real-world semantic information in a consistent and accurate manner.

1.2.2 RELATIONSHIPS BETWEEN REAL-WORLD ENTITIES AND

Loaic

The relationships between elements in software and real-world entities are complex

but important. Such a relationship has two parts: (a) mapping links between real-world

Chapter 1 Introduction

entities and program elements (e.g., variables, values), and (b) possible differences
introduced by the hardware.

A software system relies upon sensors to acquire information about the real world
within which the system operates. Of necessity, the sensed values are approximations
of real-world values. However, the fact that sensed values are approximate is often
neglected. Variable names in programs are often the names of sensed values, and
calculations are performed assuming the variable is the real-world entity. In effect, the
machine representations of real-world entities provided by computer systems are
intertwined ambiguously with concepts in reality; such situations miss the fact that
what is available to the software is not always what is present in the real world.

In order to deal with this challenge, the interpretation should (1) clearly separate
real-world entities from their machine representations in software logic, and (2)
explicitly document the differences. Real-world entities are what software programs
intend to manipulate. Machine representations are virtual versions of real-world entities
provided by hardware. Separation of the two reminds the programmers of the

differences and urges them to pay attentions to the differences.

1.2.3 REAL-WORLD CONSTRAINTS

Real-world constraints and invariants are those inherited from real-world properties
(e.g., the laws of physics), and these constraints and invariants should be observed in
programs. Current research efforts focus on specific kinds of real-world constraints, yet

lack systematic approaches to check constraints derive from various sources.

Chapter 1 Introduction

A common type of real-world constraints is unit consistency. Research efforts have
been made to check unit inconsistency. For example, assigning a variable measured in
feet to a variable measured in meters is erroneous. However, these efforts are limited
to basic rules derived from dimensions or combinations of entities with different units.

Existing approaches for checking unit consistency cannot be readily extended to
checking other real-world constraints. They often refine the built-in type systems with
type qualifiers or other similar annotations that denote units of measurement. These
approaches can be applied to check other machine-world context properties, such as
nullness and interning. However, they are not suitable to express different kinds of real-
world constraint, nor capable of conveying real-world semantic information.

In addition to unit consistency, other kinds of real-world constraints that should be
observed. For example, the following constraints should be obeyed in a geographic
software system:

e Adding latitude to longitude should probably not be allowed.

e Adding geodetic latitude to geocentric latitude should probably not be allowed.

e A point in one coordinate system should probably not be used in an expression

with a point in another coordinate system.
In order to deal with this challenge, the interpretation should permit an approach that
systematically allows the definition of properties derived from these real-world
constraints and invariants. Properties derived from real-world constraints and
invariants probably come from various domains or sources. Automated checking of
these properties requires a systematic approach that documents and enforces different

kinds of properties.

10

Chapter 1 Introduction

1.3 SOLUTION AND PREVIEW OF CONTRIBUTIONS

As noted above, for software systems that are safety critical, assurance of their
correct operation depends on the interpretation of the logic being complete and correct.
Dealing with this dependence begins with the interpretation being documented
precisely and comprehensively. Without such documentation, doubt in the correctness
of the effects of such systems will arise inevitably.

The strategy employed by the solution presented in this work is to document the
interpretation of software explicitly and comprehensively, and leverage the
interpretation pragmatically for software fault detection.

The explicit and systematic documentation of the interpretation of software logic

provides three major advantages:

e The interpretation informs the design of the software of the actual entities that the

software will affect, and thus allows better design choices.

e The interpretation documents essential reference material in a centralized and well-
defined form allowing rigorous examination for correctness and completeness by

human inspection.

e The real-world constraints and invariants that the interpretation exposes can be

checked providing a new mechanism for detecting software faults.

All three of these advantages are valuable, but the provision of a significant new
capability for detecting software faults is of particular importance. Static analysis of a

system’s software where the analysis derives from the interpretation allows the

11

Chapter 1 Introduction

detection of faults that result from misuse of real-world entities or violate real-world
constraints.

The necessity of explicitly defining an interpretation for software indicates the need
for a new artifact that includes both software logic and its interpretation. To satisfy this
demand, this dissertation advocates a new structure, the interpreted formalism, to
incorporate an explicit interpretation into the engineering artifacts that are needed for

software systems.

13.1 GOALS AND APPROACH OF INTERPRETED FORMALISM

The main goal of the interpreted formalism is to improve software quality via
reasoning and automated checking of real-world constraints in programs. This goal can

be divided into three sub-goals:

o Explicitly specify the real-world context. The real-world context provides a broad
basis for defining properties in analyses. Any limitations and constraints in the real-
world context can be used in analyses of the software. This specification should also

describe the characteristics of real-world entities of interests.

o Clearly separate real-world entities from their machine representations in software
logic. Real-world entities are the entities that software programs intend to
manipulate. Machine representations are virtual versions of real-world entities in the
software logic. Separation of the two reminds the engineers of the differences and

urges them to think from the perspective of the real-world context.

12

Chapter 1 Introduction

o Systematically establish properties derived from the real-world context in software
programs. Properties derived from the real-world context probably come from
various domains. Automated checking of these properties requires a systematic

approach that documents and enforces different kinds of properties.

In order to achieve these goals, an interpreted formalism needs to accomplish the

following tasks:

1. For the first goal, real-world entities and the relationships between these entities
must be well documented. For each entity, its real-world semantic information
should be completely documented so that the details of the entity can be accurately
conveyed from one person to another. The constraints and invariants between real-
world entities should be clearly documented; they are constraints that need to be

observed in software programs by analyses.

2. For the second goal, the connections and differences between real-world entities and
their machine representations should be explicitly documented. Such explicit
documentation demonstrates the differences between real-world entities and their
machine representations; it also enables possible techniques that analyze the

discrepancy caused by different pieces of the logic.

3. For the third goal, an interpreted formalism should be able to link real-world entities
with their corresponding program elements, such as variables, instances, and
functions. With such links, programmers are able to locate all program elements in

the process of establishing properties. In addition to the links, documentations for

13

Chapter 1 Introduction

the first and second goals should be machine readable, so that automated analyses

can be employed.

1.3.2 INTERPRETED FORMALISM

In order to accomplish the tasks stated above, an interpreted formalism is structured
with three components: (a) software logic, (b) specifications of relevant real-world
entities that affected by the software logic, and (c) an interpretation that specifies the
relationship between software entities and real-world entities.

The structure of an interpreted formalism is shown in Fig. 2. The real-world
specification is a machine-readable specification that characterizes the real-world
entities affecting and being affected by the system of interest. The interpretation is

added explicitly to document the relationships between logic and real-world entities.

Interpreted Formalism
fl
T o
¥ Interpretation Software
ﬂ‘ il_‘
Y :
Real-world Real-world [~ Interpretation Software
Invariants L Entry L] Entity
Rules Derived
> From Real-world Software Source
. Program
Invariants
Legend

——> Software Entities To Include In Interpretation ——= Real World Invariants To Include In Interpretation

—> Derivation Of Real World Invariants — Link From Software Entity To Real World Entity

Fig. 2. Overview of interpreted formalism

14

Chapter 1 Introduction

In the development of a particular computer system of interest, the task is no longer
to develop software. The task is, in fact, to develop an interpreted formalism. Without
the explicit interpretation, whatever would be developed as “software” runs the risk of
failing to define the desired interaction with the real world correctly, where the
implementation of that interaction is the entire purpose of the software system.

The switch from developing software to developing an interpreted formalism is a
paradigm shift. Such a change should not be undertaken lightly, but with the number,
criticality, and consequences of the failure of safety-critical system increasing, the shift

needs to be considered seriously.

1.3.3 THESIS STATEMENT

As originally observed by Jackson [40], the development of computer systems
should begin with the definition of the problem to be solved as framed in the real world.
The solution has to be implemented in the machine world. This idea was expanded by
Gunter et.al in the reference model [31]. This dissertation research follows this
paradigm. An initial practical mechanism to effect this was the four-variable model
introduced by Parnas and Madey [65]. Although not stated as such, the four-variable
model is a very preliminary form of an interpretation. The concept of interpretation
links the real world to the machine world.

The thesis statement for this work is:

15

Chapter 1 Introduction

Explicit interpretation of software logic in the form of real-world type
systems can practically promote greater confidence in software systems
that manipulate real-world entities, by enabling automated checking of

real-world constraints and invariants.

1.34 PREVIEW OF CONTRIBUTIONS

The idea of situated formalism makes four main contributions:

e Itintroduces a new paradigm for software development. This dissertation advocates
that the interpreted formalism rather than isolated software is the right artifact for

the development of safety-critical systems.

e It introduces a preliminary explicit content and structure for defining an

interpretation.

e It provides a framework for systematic detection of software faults that violate real-

world invariants.

e It introduces several mechanisms that facilitate developing interpreted formalisms,

which has the potential to be reused in other projects.

14 ORGANIZATION OF THE WORK

The remainder of the document is organized as follows:
Chapter 2 elaborates on the idea of logic interpretation. It explains the role and

necessity of logic interpretation in details.

16

Chapter 1 Introduction

Chapter 3 introduces the concept of interpreted formalism. A new form of software
systems based on an interpreted formalism is described. The definition of the
interpreted formalism is introduced, and an example is presented.

Chapter 4 introduces real-world type. It is an implementation of the interpreted
formalism concept. The concept and details of real-world types are introduced, and an
example is given.

Chapter 5 describes the techniques by which the interpreted formalism is leveraged
to established properties in software logic. Several analysis techniques based on
interpreted formalisms are introduced. The analysis techniques include both compile-
time and runtime assurance.

Chapter 6 addresses the processes and tool support for developing interpreted
formalisms. Especially, it introduces a synthesis framework that extracts candidate
interpreted formalisms from the source code of the targeted application.

Chapter 7 introduces the prototype implementation based on real-world types and
the interpreted formalism. The prototype is implemented with Java language.

Chapter 8 describes the overview of evaluation undertaken to assess the feasibility,
efficiency, and other properties of the interpreted formalism.

Chapter 9 and Chapter 10 present details of the two case studies conducted on open-
source software for the purposes of evaluation.

Chapter 11 illustrates the practical application of the interpreted formalism and real-
world types by a case study.

Chapter 12 illustrates how to use synthesis framework of the interpreted formalism

by a case study on an open-source project.

17

Chapter 1 Introduction

Chapter 13 reviews the related literature concerning every aspect of the interpreted
formalism.

Chapter 14 summarizes the idea, findings, and contributions of the work.

18

CHAPTER 2

2. LOGIC INTERPRETATION

This chapter describes the concept of interpretation, various forms of insufficient

interpretation, and advantages of an explicit and comprehensive interpretation.

2.1 THE CONCEPT OF LOGIC INTERPRETATION

The role of interpretation can be thought of as an enhanced version of an abstraction
function in logic that maps concrete representations such as variables to abstract
representations such as abstract data types. A stack, for example, is an abstract data
type that has a concrete implementation as an array and an integer index into the array.

In a similar way, an interpretation maps an element of logic to its real-world
meaning. For example, an integer variable in an avionics program might be used to
represent the actual altitude of an aircraft. Within the logic of the software, the variable
is merely an integer. The role of the interpretation is to reveal everything about the

actual altitude of the aircraft.

19

Chapter 2 Logic Interpretation

Fig. 3 illustrates this idea. The system design process starts with a problem to be
solved in the real world and develops a concrete solution in logic. The interpretation

provides the abstract (real world) details of a concrete entity (logic).

Abstract Concrete

Real World Machine World

Real-world I P > Machine-world
Entity Interpretation < Entity
_'—
LO (System Design Process J—j

Fig. 3. Interpretation as an abstraction from concrete to abstract

2.2 IMPLICIT INTERPRETATION

Interpretation of software is not a new idea. As stated in the first chapter, the
interpretation of a software system is always present in practice, but usually
documented in an ad hoc, informal and sometimes implicit manner. The figures below

show examples of implicit interpretation that are documented using casual techniques.

20

Chapter 2 Logic Interpretation

final double a = final double altToBOD =
alt - to.getElevation(); altitude - to.getElevation();
final double t = final double timeToBOD =
a / plan.getAircraft () altToBOD / plan.getAircraft ()
.getSinkSpeed() / 60; .getSinkSpeed() / 60;
(a) (b)

/* Calc the time to get to Bottom Of Decrease (BOD).
altitude is the altitude of the BOD;

getSinkSpeed () returns the horizontal speed of the plane;
60 is used to convert the rate */

final double altToBOD = altitude - to.getElevation();
final double timeToBOD = altToBOD /

plan.getAircraft () .getSinkSpeed() / 60;

(©

Fig. 4. Examples of insufficient interpretation

All three examples serve the same function: calculating the time needed for the
aircraft to decline to the point of BOD (Bottom Of Decrease).

Each of them documents its interpretation differently:

In Fig. 4 (a), only pieces of the real-world meanings are implied. The identifiers of
the method invocations, e.g., getElevation(), imply possible meanings of the
statements. However, a great deal of information about the real-world meanings is
incomplete. For example, the real-world entities represented by variables a and t are

not clear.

In Fig. 4 (b), the interpretation has been improved a little comparing with (a), since

the identifiers are named in a more “meaningful” way. The identifier altToBOD

21

Chapter 2 Logic Interpretation

implies that the variable is representing the altitude of the point of BOD; the
identifier time implies that the variable is representing time. However, such
information is still partial and leaves relevant information in doubt, for example,

what does BOD mean? What are the units of measurement for altitude and time?

e InFig. 4 (c), the interpretation is presented with descriptive comments. More details
about the variables and statements are documented. The comments can be further
expanded to include more information such as units of measurement of time and
reference level of the altitude. However, interpretation is still incomplete, since the
interpretation should document the details of the connection between variables and
their corresponding real-world entities. For example, the interpretation should
explain the differences between the value of variable altToBOD, and the real value
of the altitude. Such differences are caused by the hardware system and are crucial

when understanding the effect on the real world made by the program statements.

All of the forms of interpretation above document or imply some details about the real-

world entities being affected, but such details are prone to three kinds of problems:

e Real-world meanings are incomplete. Casual techniques lack a clear structure to
document and convey real-world meanings. Characteristics of the affected real-
world entities are frequently unspecified or under-specified. For example, what are

the units for the distance?

e The connections between elements in logic and their real-world entities are under-
specified. Such connections are not simply one-to-one correspondences. Details

about the connections, such as the differences, should be documented as well.

22

Chapter 2 Logic Interpretation

e Real-world constraints are possibly violated. Program statements such as those
shown in Fig. 4 introduce faults into the system due to the misunderstanding about
the effect of real-world entities. The function getSinkSpeed(), for example, returns
the horizontal speed of the aircraft, while the speed in the vertical direction is needed

for a correct calculation.

2.3 EXPLICIT INTERPRETATION

In order to deal with the issues that arise with implicit interpretations. This
dissertation advocates building explicit interpretations for software logic.

An explicit interpretation documents the real-world meanings of logic elements in
a precise, clear and explicit manner. With an explicit interpretation, important
characteristics of real-world entities, such as units and dimensions, and associated real-
world constraints, such as not mixing units, can be stated and enforced. In addition,
crucial relationships between logic representations and real-world entities, such as
accuracy of sensed values, can be fully specified.

As an example, consider the altitude of an aircraft and the representation of altitude
in avionics software. Aircraft altitude is not just a number even though it might be
represented as such in software. Altitude has many important attributes that impact the
way that a software system, such as an aircraft’s autopilot, computes using altitude, etc.

A partial list of those attributes is:

e Measurement units. The altitude value will be measured in prescribed units (feet,

meters, etc.).

23

Chapter 2 Logic Interpretation

¢ Physical dimensions. Altitude has the fundamental physical dimension of length.

e Frame of reference. Altitude is defined based on an origin and the direction, i.e., a

frame of reference.

o Reference level. Altitude is measured vertically between a point or object and a

reference level. The reference level could be mean sea level or local ground terrain.

e Sensor performance. A sensor, i.e., a transducer, will have determined the value to
be supplied to the software and so that value will be of limited precision and

accuracy because sensors are imperfect transducers.

e Sensing schedule. Transducers supply values according to a discrete-time schedule.
The value supplied to the software is the value obtained when the sensor sample was

taken, not the “current” value, i.e., the altitude of the aircraft “now”.

With an explicit interpretation that documents details of a quantity such as altitude, a
wide variety of checks of the software in a software system such as an autopilot are

possible, such as:

e Mixed measurement units. Expressions which mix units of measurement are
probably erroneous unless an appropriate conversion is provided. For example,
adding an altitude measured in feet to a displacement measured in meters is probably

an error if no conversion factor is included in the computation.

e Mixed physical dimensions. Dimensional analysis is a standard error detection

mechanism in physics. Thus, for example, assigning the result of dividing altitude

24

Chapter 2 Logic Interpretation

with physical dimension length by a time to a variable that is not a speed (speed has

the dimensions of length/time) is probably an error.

e Mixed frames of reference. Altitude is measured in a frame of reference with an
origin and an orientation. A distance calculation between two points is probably

erroneous if the two points are from different frames of reference.

e Mixed reference levels. Altitude is a vertical measurement between a point and a
reference level. A calculation between two points is probably erroneous if the two

points are measured to different reference levels.

e Inaccuracy caused by sensors. Altitude is measured by sensors and other hardware
devices. Sensed values are finite, imperfect and inaccurate. These inaccurate values

could have been involved in different calculations.

2.4 ADVANTAGES OF AN EXPLICIT INTERPRETATION
The explicit and systematic documentation of the interpretation of software logic
provides three major advantages:

e The interpretation informs the design of the software of the actual entities that the

software will affect, and thus allows better design choices.

¢ The interpretation documents essential reference material in a centralized and well-
defined form allowing rigorous examination for correctness and completeness by

human inspection.

25

Chapter 2 Logic Interpretation

e The real-world constraints and invariants that the interpretation exposes can be

checked providing a new mechanism for detecting software faults.

All three of these advantages are valuable, but the provision of a significant new
capability for detecting software faults is especially important. Static analysis of a
system’s software where the analysis derives from the interpretation allows the
detection of faults that result from misuse of real-world entities or violate real-world
constraints. In the case studies, such analyses revealed both unrecognized faults and
faults that had been reported as bugs in real systems after deployment [83]. Details

about this new fault detection capability are given in Chapter 5.

26

CHAPTER 3

3. INTERPRETED FORMALISM

Having established the role and value of an interpretation of the logic in a software
system, we turn to the structure needed to incorporate an explicit interpretation into the
engineering artifacts that are needed for software systems. The structure introduced is
called an interpreted formalism.

This chapter introduces the concept and structure of the interpreted formalism. The

next chapter will describe a pragmatic implementation of interpreted formalisms.

3.1 OVERVIEW OF INTERPRETED FORMALISM

The basic structure of the interpreted formalism concept is shown in Fig. 5.

27

Chapter 3 Interpreted Formalism

Interpreted Formalism
fa)
o 3 -
S Interpretation Software
| &.
Real-world Real-world [Interpretation Software
Invariants Entity Entry L Entity
Rules Derived
> From Real-world Software Source
. Program
Invariants
Legend
—> Software Entities To Include In Interpretation ——=> Real World Invariants To Include In Interpretation
—> Derivation Of Real World Invariants — Link From Software Entity To Real World Entity

Fig. 5. An interpreted formalism combines logic with an explicit interpretation

The logic in an interpreted formalism is defined in whatever manner is appropriate
for the system of interest, i.e., the choice of programming language, programming
standards, compiler, and so on, are unaffected by the interpreted formalism structure.
The key difference, of course, is the addition of the explicit interpretation.

As discussed in Chapter 1, an interpretation is always present for software systems
that interact with the real world. The interpreted formalism combines an interpretation
and the software in a manner that makes the interpretation a first-class entity.

In the development of a particular software system, the task is no longer to develop
software. The task is, in fact, to develop an interpreted formalism for the system of
interest. Without the explicit interpretation, whatever would be developed as
“software” runs the risk of failing to define the desired interaction with the real world
correctly, where the implementation of that interaction is the entire purpose of the

software system.

28

Chapter 3 Interpreted Formalism

As noted in Chapter 1, the switch from developing software to developing an
interpreted formalism is a paradigm shift. The shift needs to be considered seriously

due to the importance of software systems, especially safety-critical ones.

3.2 A NEW DEFINITION OF A SOFTWARE SYSTEM

This section introduces a general form of software systems and a novel form based

on the interpreted formalism and interpretation.

3.21 A GENERAL FORM OF SOFTWARE SYSTEMS

In practice, software systems have the general form shown in Fig. 6. An important
aspect of a software system is the distinction between continuous functions and discrete
functions. Simple two-state (“on” and “off”) discrete functions arise in the real world
with switches, but many signals in the real world that are intended to change the state
of the logic function are continuous. Signals to which the logic function might react
and the signals that it generates are discrete. Transducers process continuous signals in
the real world to produce discrete signals that are input to the logic function. By making
various state transitions, the logic function effects a “computation” that produces digital
signals that are designed to affect real-world entities. Transducers process these digital

signals to produce continuous signals that are output to the real world.

29

Chapter 3 Interpreted Formalism

N I
Continuous >

Signal Discrete Transducer

Signal

Discrete
Signal

>
>

Signal Source Signal Sink —

e)
Real World g 3
Entities 5 3
:

Signal Source

l
D uoneinduwo)
l

“— | signal Sink | —/

<

Discrete

Signal Transducer |« Dsl?gr:e:Ie

Continuous
Signal

L

Fig. 6. The basic elements of a software system

An important element of the distinction between continuous and discrete functions
is time. Time is continuous for both the real world entities and logic, but logic models
the progress of time as a discrete function; and the logic changes state only at regular

discrete-time intervals.

3.2.2 A NEW FORM OF SOFTWARE SYSTEMS

With the concept, role, and importance of the interpretation defined and with the
interpreted formalism structure in place, we have the elements needed to define a

software system in a new and more comprehensive way.

30

Chapter 3 Interpreted Formalism

A software system that interacts with the real world, e.g., cyber-physical systems

and embedded systems, is a triple {RW, HW, IF} where:
e RW: A set of entities in the real world with which the system interacts.

e HW: A hardware platform that: (a) executes the system’s software, and (b) provides
the physical connections between the set of real-world entities and the system’s

software.

e IF: An interpreted formalism that is composed of software logic and an

interpretation. The interpreted formalism links the two parts above.

For the most part, RW and HW are familiar. The set RW can be enumerated based on
the problem to be solved by the software system. For example, in the case of a drug-
infusion pump, the pump has to interact with (1) the patient’s physiology, (2) the patient
and medical professionals as “users” through a human-machine interface, and (3) the
environment including gases, radiation fields and physical entities that might cause
damage.

HW for a drug-infusion pump is a collection of specialized hardware items
including a pump, a drug reservoir, multiple valves, switches, a keyboard, one or more
computers, a network interface, and so on.

IF is the new concept introduced in this dissertation. It defines the logic of the
computer system and links elements in computations to real-world entities.

Fig. 7 shows this new form of software systems. It includes an explicit
interpretation and an explicit indication that the design of the computation derives

fundamentally from the real-world context within which the system will operate.

31

Chapter 3 Interpreted Formalism

Continuous

- P :
Signal Discrete
g Discrete Transducer Signal

Signal
I

|
~ | e

DeS|gn >

|
Real World
Entities Interpretatlon

— Signal Sink — '—— Signal Source ——
Continuous Discrete
Time | Time

Discrete

Signal Transducer <& DSISig::-;:Ie

Signal Source

D uonejndwo)

Continuous
Signal

Fig. 7. The basic elements of a software system with an interpretation

3.3 THE STRUCTURE OF INTERPRETED FORMALISM

This section introduces the structure of an interpreted formalism, i.e., the software
logic of the system coupled with the interpretation of that software.

As stated above, the logic is developed unaffected by the interpreted formalism
structure. Therefore, the focus of this section is on the structure of interpretations.

An interpretation consists of two components: (1) a real-world specification that
explicates all real-world entities accessed in elements of logic, and (2) a relationship

specification that explains the relationships between entities in logic and their

32

Chapter 3 Interpreted Formalism

corresponding real-world entities. These two components are described in the

following subsections.

3.3.1 A REAL-WORLD SPECIFICATION

Defining the content and structure of an effective and complete specification of the
real world for practical use is a significant challenge. The real-world specification in
an interpreted formalism has two goals: (a) convey the meanings of real-world entities
by revealing important characteristics of the entities, and (b) expose real-world
constraints and invariants so analysis techniques can be developed to check these
constraints in logic.

To satisfy the two goals, the real-world specification is designed as a composition
of (a) a set of specifications for real-world entities, and (b) a set of real-world
constraints and invariants. Such design is based on previous work on real-world types

[83]. The details are explored in Chapter 4.

SPECIFICATIONS OF REAL-WORLD ENTITIES

The first part of a real-world specification is a set of specifications for real-world
entities. Each of these specifications explicates defines one type of real-world entity.
For example, in a geographic software system, one specification could be defined for
latitude, and another specification could be defined for longitude.

A specification for a real-world entity contains two components:

» The real-world semantic attributes associated with the entity. These

attributes are properties possessed by the real-world entity. For example, for

33

Chapter 3 Interpreted Formalism

the real-world altitude of an aircraft, the semantic attributes include
measurement of units, physical dimensions, the frame of reference, and so

on.

» An explication. An explication is a careful, detailed, and precise statement
in natural language that provides the reader with a detailed explanation of
the various terms and concepts in use. For example, the explication for the
real-world altitude is a vertical distance measurement between a reference
level and a point or object. The reference level varies according to the

context. Altitude is often used to mean the height above sea level of a point.

REAL-WORLD CONSTRAINTS AND INVARIANTS

The second part of the real-world specification documents the real-world
constraints and invariants. These constraints and invariants define allowable operations
on real-world entities. They should be enforced on entities in the logic to avoid misuse
of real-world entities. For example, values of altitude involved in the same calculation

should have the identical unit of measurement and reference ground.

3.3.2 A RELATIONSHIP SPECIFICATION

Defining the contents and structure of the relationships between elements in logic
and their corresponding real-world entities is also a non-trivial task. The relationship
specification has two goals: (a) exhibit the mapping connections between elements in

logic and their corresponding real-world entities, and (b) reveal the details of the

34

Chapter 3 Interpreted Formalism

relationship, such as the differences between the two, so that automatic or manual
analysis can estimate the discrepancy in the real world.

To satisfy the two goals, the relationship specification is designed as a composition
of a set of specifications for relationships. Each specification characterizes one kind of
relationship between elements in logic and their corresponding real-world entities. For
example, a local variable named a1t is used to represent the values of altitude. The
altitude values are measured by conventional GPS devices. The discrepancy involved
could be as far as 400 feet. The delay of data could be as late as 5 seconds.

A specification of relationship contains two components:

» A set of mapping links. A mapping link is a pair that combines an element in
logic with its corresponding piece in the real-world specification. A relationship

specification contains a set of mapping links.

» An explanation of the relationship. This explanation specifies details about
the relationship. It includes information such as details of differences between

real-world values and values in logic that arise inevitably in sensor systems.

A SET OF MAPPING LINKS

A mapping link connects an element in logic to its corresponding real-world entity.
Frequently, a relationship specification has more than one mapping links, since one
real-world entity could have been accessed by logic elements from different places.
These mapping links are all connected to one real-world entity, but connected from
different program elements. Various kinds of elements can be connected to real-world

entities through these links, such as program variables, constants, and method

35

Chapter 3 Interpreted Formalism

signatures. Mapping links essentially expose real-world constraints and invariants to

programs. Analysis techniques rely on these links to conduct error checking.

AN EXPLANATION OF THE RELATIONSHIP

The relationship between a logic elements and a real-world entity is more than just
a simple mapping. Differences arise due to hardware failures and inaccuracy. To
document such differences explicitly, the second part of a relationship specification is
a detailed explanation of the relationship.

Errors and inaccuracy exist in different dimensions. For example, sensors provide
values of real-world entities to the software, and the values have limited precision and
accuracy. Also, these values are sensed according to a discrete-time schedule. The
values provided to the software are not the current values of the real-world entities.

In order to specify the relationship, this explanation is defined as a proposition. It
typically has the form of a conjunction of predicates where each predicate indicates one
dimension of imprecision. For example, the explication for an altitude might take the

form:
error < delta AND delay < tau

The first predicate documents the maximum difference between the actual altitude
and the value supplied by the sensing system, and the second documents the maximum
delay between sensing the altitude and the associated value being available in the
software system.

With the details of an interpretation as outlined above, a new spectrum of analyses

become possible. The explicit links to the real-world specification it documents help

36

Chapter 3 Interpreted Formalism

the programmers track real-world meanings of software entities, and thus reduce
misunderstandings. The details of the relationship it exposes, e.g. the discrepancies
caused by sensors and timing differences, can be inspected to assure the accuracy of
the software system. The analyses based on interpretations will be further described in

Chapter 5.

3.4 AN INTERPRETED FORMALISM EXAMPLE

This section illustrates the interpreted formalism concept with an example of
altitude. The logic part of the example comes from the software Kelpie flight planner

[43]. The code fragment is shown below.

341 LOGIC COMPONENT

public void setElevations(..) {

double alt = from.getElevation();

if (..)

alt = maxAlt;

} else if (..) {

alt+=legTime*plan.getAircraft () .getClimbRate () /60;

} else if (..) {

37

Chapter 3 Interpreted Formalism

wp.setElevation(alt);

} else (..) {

alt-=legTime*plan.getAircraft () .getSinkSpeed()/60;

In this logic part, a program variable named alt is used to represent altitude of
airplanes. The value of altitude is accessed in several statements and involved in several

computations.

3.4.2 INTERPRETATION

The piece of interpretation defined for alt contains a real-world specification and a

relationship specification.

REAL-WORLD SPECIFICATION

e An explication

Altitude is a vertical distance measurement between a reference level and a point or
object. The reference level varies according to the context. Altitude is often used to
mean the height above sea level of a point. In geography domain, the term elevation

is often preferred rather than the term altitude.
e Real-world semantic attributes

Altitude has a list of semantic attributes. The attributes are:

38

Chapter 3 Interpreted Formalism

(@) Units of measurement: the unit for altitude used in this software is feet.

(b) Dimension: the dimension for latitude is length.

(c) Technology: the technique used to measure the altitude value is radar.

(d) Geometry plane: altitude is a value measured vertically.

(e) Reference level: the reference level of the altitude value is mean sea level.

(f) Coordinate system: the coordinate system is Cartesian.

(g) Feasible range: the reasonable range of altitude in this software is between 0

and 30000 feet.

e Real-world constraint and invariants

(@) A constraint for units: the units of altitude values must match if they are
added/subtracted. The result is of altitude measured in the same units.

(b) A constraint for dimension: the dimensions of altitude values must match if
they are added/subtracted. The result is of altitude measured in the same
dimension.

(c) A constraint for geometry plane: values must be measured vertically if they
are calculated with values of altitude

(d) A constraint for reference level: the reference datum of altitude values must
be the same if they are added/subtracted.

(e) A constraint for coordinate system: the coordinate system of altitude values
must be the same when they are used in one computation.

() An invariant for reasonable range: values of altitude should stay in the

reasonable range.

39

Chapter 3 Interpreted Formalism

(9) An invariant for altitude: a value of altitude subtracted by a value of altitude

yields a value of height.

A RELATIONSHIP SPECIFICATION

e A set of mapping links

(@) Variable a1t < altitude: this local variable in the function setElevation ()
represents values of altitude.
(b) Return values of function getElevation () < altitude: the function returns

values of altitude.
e An explanation of the relationship

This proposition is a conjunction of two predicates:
|altitude — alt| < 50 feet AND delay (altitude, alt) < 1 second
(@) Inaccuracy: variables of altitude, e.g. a1t, used in the software are different
from the values of altitude in the real world. The maximum difference is 50
feet.
(b) Delay: variables of altitude, e.g. a1t, used in the software are delayed values

of the current values. The maximum delay is 1 second.

40

CHAPTER 4

4. REAL-WORLD TYPE: AN IMPLEMENTATION OF THE
INTERPRETED FORMALISM

The concept of logic interpretation is well established, but defining the content and
structure of an effective and complete interpretation for practical use is a significant
challenge. In this chapter, an implementation of the interpreted formalism concept is
introduced.

The implementation is based on the concept of real-world types [83]. The design
of the interpretation is a set of real-world types and a set of real-world type rules defined
within the framework of a real-world type system.

This chapter first introduces the concept of real-world types and real-world type
rules, then presents the overall structure of a real-world type system. In addition, some

issues relevant to building a real-world type system are discussed.

41

Chapter 4 Real-World Types

4.1 REAL-WORLD TYPES

41.1 THE CONCEPT OF REAL-WORLD TYPES

A real-world type is the real-world analog of a type in a formal language. A real-
world type defines the values that a physical entity in the real world of that type can
have and the operations in which it can engage. For entities of a given real-world type,
the type definition documents the real-world specification, the machine representation,
and the relation between the two. The specification of a real-world type defines
relevant, observable properties of real-world entities of that type. The machine
representation defines how a real-world entity is represented in the machine and thus
becomes accessible by software. The relationship defines the connection between real-
world entities and associated machine elements.

Real-world types are structured to facilitate design in software engineering from the
real world to the machine world, so as to enable all relevant aspects of the real world
to be considered in developing a computer system. As such, a real-world type is not
expressible in its entirety within a mathematical framework. In general, real-world
types cannot be expressed conveniently in the type systems of modern programming
languages, because of the large number of distinct attributes that real-world types can

include.

412 THE STRUCTURE OF REAL-WORLD TYPES

A real-world type has a name and a structure that consist of three parts:

42

Chapter 4 Real-World Types

e The specification of the type derived from the associated real world entities.
e The machine representation of instances of the type.
e The relationship between the specification and the representation.

Details of these three parts are presented in the remainder of this section.

SPECIFICATION

The specification inside a real-world type contains two parts:
1. An explication.
2. The real-world attributes associated with real-world types.
The first part of the specification is an explication of the type intended for humans. An
explication is a careful, detailed and precise explanation provides the reader with a
detailed explanation of the various terms and concepts in use. Explications are required
for real-world types so as to ensure that a single source of meaning is provided for all
the entities with which the computing system interacts. The explication could be in
natural language or a combination of natural and formal languages. The explication is
the means by which the interpretation is given to the real-world type.

Continuing the example of altitude in an avionics system, given that altitude could
mean height above local ground level or height above mean sea level, and could be
determined by radar, barometric pressure, or GPS, all these terms need to be defined.
Exactly how each semantic concept is used for this type needs to be explained in the

explication for altitude.

43

Chapter 4 Real-World Types

The second part of the specification is a set of real-world semantics. A real-world
semantic can be any real-world property of interest. Every semantic is defined through
(a) an explication of the semantic, (b) the set of values that the semantic can take, and
(c) reference sources such as online resources or a dictionary.

Returning to the example of an aircraft’s altitude, a semantic is the reference level
used in the measurement. This semantic could be either sea level or local ground level.

Documentation for the specification of such a semantic is shown in Table. 1

Table. 1. Example real-world semantic

Semantic Name Taken Value Possible values Explication
Reference level local ground | Mean sea level; e Reference datum from which
local ground,; altitude value is measured

e Basic Geo Vocabulary

e DAML location ontology

A complete set of semantics for altitude would include reference level, frame of
reference (surface location, Earth center, etc.), units of measurement, etc.

Units and physical dimensions are examples of real-world semantics, and their
introduction into programming languages along with analysis techniques to perform
type correctness checks have been explored previously [32, 37, 44]. In our theory of
real-world types, units, and dimensions are just special case semantics and are
predefined because of their widespread use and importance in real-world properties.

Units can be enumerated as needed by an application. The dimensions semantic

consists of the seven basic dimensions of physics (mass, length, time, electric current,

44

Chapter 4 Real-World Types

temperature, luminosity, and amount of substance) [36]. The existence of this semantic
allows the standard dimensional analysis of physics to be applied. For simplicity, in
our own use of dimensional analysis, we added angle to the set for a vector length of
eight. Thus, a semantic value of dimensions is an eight-element vector of integers
defining the real-world dimensions of the associated variable. Some example

dimensions are:

Speed : (0,1,-1,0,0,0,0,0)
Acceleration : (0,1,-2,0,0,0,0,0)
Energy : (1,2,-2,0,0,0,0,0)

REPRESENTATION

The machine representation of a type is characterized by a set of semantics that
describe the properties derived from the machine context. Machine-world semantics in
the representation use a similar format to that used for the real-world semantics in the
specification.

Some examples of machine-world semantics and the associated values that they can

take are:
Encoding : integer, floating point, double
Mutability : mutable, non-mutable

The mutability semantic indicates whether objects of the type are constant, thereby

allowing for detection of unintended assignments.

45

Chapter 4 Real-World Types

RELATIONSHIP

The relationship that connects the specification to the machine representation of a
real-world type is defined as a proposition. The function typically has the form of a
conjunction of predicates where each predicate indicates one dimension of imprecision.

In the altitude example, the mapping might take the form:
value: error < delta and delay < tau

The first predicate documents the maximum difference between the actual altitude
and the value supplied by the sensing system, and the second documents the maximum
delay between sensing the altitude and the associated value being available in the

machine world.

4.1.3 REAL-WORLD TYPE EXAMPLE

An example of a real-world type is a point in three-dimensional space, 3p1oc.
Measurements designed to locate a point are only relevant if the associated coordinate
system is defined completely. If multiple coordinate systems are in use in a program,
they must be distinguished. Thus, the real-world type information associated with an
instance of the class needs to document the different aspects of the coordinate system.

A possible definition for a point in 3D space, including all of the coordinate system
information is shown in Fig. 8. The field names in this definition are the attributes of
interest. Many other formats and sets of attributes are possible. In this definition, the

explications are omitted for simplicity. Note that this type definition is created just to

46

Chapter 4 Real-World Types

distinguish coordinate systems. Separately, we need the types of the three fields that

will be used for a point in the coordinate system.

geographic_cartesian_coord_sys:
Specification
explication : <text>

real world semantics

coordinate_sys_ type : cartesian
target_space : Earth
origin : center of mass of Earth
dimensionality : 3
earth model : spheroid
X_axis_orientn : positive toward 0 degrees longitude
y_axis_orientn : positive toward 90 degrees east longitude
z_axis orientn : positive northward
Representation

machine semantics
representation : record structure - (x, y, z)

Relationship : <null>

Fig. 8. A real-world type definition for a coordinate system

For the three fields of the record, one, two, or three different type definitions might
be needed. For this example, we assume that the x and y variables can share a type
definition and a second definition is used for z. For x and y, we define the type shown

in Fig. 9.

47

Chapter 4 Real-World Types

horizontal_ cartesian_axis:
Specification
explication : <text>

real world semantics

linear_units : mile

dimension : length

technology : GPS

geometry plane : horizontal
Representation

machine_semantics

representation : float
mutable : no
Relationship

value_error < deltal and delay < taul

Fig. 9. A real-world type definition for x and y axis

In this example, variable z is part of a complete reference frame with an origin at
the center of mass of the Earth but with a presumed offset to mean sea level. The
appropriate type definition is shown in Fig. 10. Such a type might be used to hold data
in any space of interest. For example, the type could be used to hold location

information for aircraft, climbers, balloons, etc.

48

Chapter 4

vertical_ cartesian_axis:
Specification
explication
real world semantics
linear_ units
dimension
technology
geometry plane
offset_origin
Representation
machine_semantics
representation
mutable

Relationship

value error< delta2 and delay < tau2

Fig. 10. A real-world type definition for z axis

. <text>

feet
length

radar

: vertical

float

. no

: mean sea level

Real-World Types

4.2 REAL-WORLD TYPE RULES

Within an interpretation defined using real-world types is a set of real-world type

rules. The type rules derive from what constitutes meaningful operations in the real

world. For example, rules about units conversion, valid and invalid expressions using

variables with units, and the types resulting from expressions have to be defined in their

entirety to enable suitable checking. The examples given earlier for aircraft altitude

(measurement unit compatibility, etc.) will all be included. Rules that derive from

application-specific details will also be included. For example, an aircraft’s altitude

49

Chapter 4 Real-World Types

might be measured by radar and by barometric pressure, but for managing altitude in
an autopilot, the system developers might require that the radar measurement is used.
Type rules can be established to identify incorrect uses of altitude derived from
barometric pressure.

Developers define type rules based on the semantics of types and the desired effect
on the semantics of operations by programs. In arithmetic expressions, for example,
units must match, the dimensionality rules of physics must be observed, arithmetic
operations can only be applied to types for which they are defined, and the results of
arithmetic operations must have the correct real-world type.

Example type rules include:

The units of an angle and a latitude must match if they are added. The result is of

type latitude measured in the same units.

e A velocity, dimensions (0,1,-1,0,0,0,0,0), cannot be added to a distance, dimensions

(0,1,0,0,0,0,0,0).

e A latitude or a longitude cannot be added to a latitude or a longitude.

e An x coordinate in one frame of reference cannot be used in any arithmetic operation

with a coordinate from a different frame of reference.

e A variable of type magnetic heading cannot be used in an expression expecting a
variable of type true heading, even if both are represented as integers and are

commensurable.

50

Chapter 4 Real-World Types

e A variable of type geodetic latitude cannot be used in an expression expecting a
variable of type geocentric latitude, even if both are represented as floating point

numbers and are commensurable.

As an example of type-rule definition, consider the semantics of the result of
subtracting two operands of type vertical cartesian axis, €.9., for calculating the
altitude difference between two points in the same Cartesian coordinate system. The

definition is illustrated in Fig. 11.

(unit: feet) (unit: feet)
Dimension: length Dimension: length
coordinate_sys : cartesian coordinate_sys : cartesian
el : < technology:radar g ez : o technology:radar
of fset_origin: mean sea level of fset_origin: mean sea level
geometry_plane: vertical geometry_plane: vertical
axis: z J \ axis: z J
(unit: feet 1
Dimension: length
el — e2: axis: z

geometry_plane: vertical
kcoordinate_sys : cartesian

Fig. 11. Example type rule definition.

The notation e:T denotes a type judgment (e is of type T), and the overall construct defines an inference rule defining
the type of the result of applying a specific operator, here subtraction, to operands, el and e2, of the specified

types.

4.3 REAL-WORLD TYPE SYSTEM

Our preliminary structure for an explicit interpretation is a set of real-world types

and a set of real-world type rules, together with a set of bindings between entities in

o1

Chapter 4 Real-World Types

the real world and entities in the logic. The whole structure is referred to as a real-

world type system.

4.3.1 REAL-WORLD TYPE BINDING

The goal of real-world types is to enable automated checking of the logic based on
the real-world entities with which the logic has to interact. To exploit real-world types,
we introduce the concept of connecting them with entities in programs such as
variables, constants, and functions so as to extend the programmer designated type.
This concept is referred to as real-world type bindings.

Real-world types support analysis and enforcement of real-world constraints on
programs in a systematic way, thereby enabling new classes of software fault detection.
Real-world type bindings link real-world types to machine-level values in ways that
such fault detection is enabled without requiring programmers to adopt new machine-
level programming languages.

In general, one real-world type binding links one program entity to one real-world
type. One program entity is only linked to one real-world type. Multiply program
entities can be linked to one real-world type. All program entities that access real-world
entities needed to be linked to their real-world types through real-world type bindings.
The number of real-world type bindings in a software system depends on the size of

software and the number of program entities that access the real world.

52

Chapter 4 Real-World Types

4.3.2 REAL-WORLD TYPE SYSTEM

The interpretation is implemented as real-world types and real-world type rules in
the context of a real-world type system. A real-world type system and its connections
to an application system of interest are shown in Fig. 12. In the figure, real-world
entities are sensed and affected by sensors and actuators. In the system software, there
are software entities that model the associated real-world entities. The relationship
between a real-world entity and a software entity documents information such as
sensing precision and sensing delay. The details of both and their relationships are

documented in the real-world types shown on the left of the figure.

Interpretation

Real World
Entity1

Real World
""""""" EntityN
ilsConnectedTo i

Sensors & Actuators

(| Real World
Specification

- C
Relationship |«&

[~ Machine
Representation g ilsConnectedTo i
— 1
7 2 Software Software
Entity1 """"""" EntityN

: |

isConnectedTo i
Real World

ubisag waisfs

Invariants

Software

Fig. 12. Real-world type system

In general, a real-world type system documents three major items:
1. A set of real-world types. These real-world types characterize the properties

possessed by entities of the associated types.

53

Chapter 4 Real-World Types

2. A set of real-world type rules. The type rules define allowable operations on
entities of the various types.
3. Asetof real-world type bindings. The type bindings link program entities to their

real-world types.

4.4 REAL-WORLD TYPES AND PROGRAM STRUCTURES.

The notion of type in programming languages includes structures such as arrays
and records. An array of integers and a record with multiple fields are types with
various associated usage and equivalence rules.

Real-world types do not have any structure beyond what has been discussed. The
reason is that the inclusion of all of the structures that arise in programming languages
is neither possible nor necessary. Defining real-world types as presented above and
using them as building blocks in language structures provides the necessary structure.
For a user-defined class, for example, a real-world type would be defined for the class
as a whole and separate real-world types could be defined for each field. The type for
a given field is then the union of the type information for the record and the type
information for that field. Nested records accumulate type in the union as each level is
progressed.

This approach raises an issue with structured types, because different instances of
a user-defined type might have different real-world types. A record structure might be
instantiated more than once to hold information with different real-world semantics but

identical structures. This issue is dealt with in our present theory of real-world types by

54

Chapter 4 Real-World Types

associating different type information with different instances of a structure but
requiring that the components of a structure have the same type information in all

instances. This restriction might be relaxed in future.

55

CHAPTER S5

5. ESTABLISHING PROPERTIES USING INTERPRETED
FORMALISM

The high-level goal of the interpreted formalism concept is to provide a mechanism
to improve software quality. Real-world type systems bring the opportunity to realize
this goal by establishing new properties in software programs. This chapter first
introduces the properties being concerned, then describes several analysis techniques

developed to establish these properties.

5.1 PROPERTIES BEING ESTABLISHED

The properties associated with real-world type systems are properties derived from
real-world contexts. These properties should be established in software systems that

manipulate real-world entities. The properties includes:

57

Chapter 5 Establishing Properties

e Property #1: Program statements conform to static real-world constraints

Real-world constraints and invariants are derived from real-world context. A large
number of real-world constraints describe static relationships between real-world
entities, for example, speed multiplied by time yields distance. Such relationships
or constraints should be observed in programs.

Establishing this property reduces violations of real-world constraints at compile
time. Errors such as unit inconsistency can be detected before execution of the

programs.

e Property #2: References from program elements to real-world entities are precise

and consistent

References to a real-world entity normally are scattered in programs. These
references could be incorrect; for example, a variable that is expected to represent
latitude is used as longitude. The references could also be inconsistent; for example,
two variables representing the same altitude use different reference ground: one uses
mean sea level, the other uses local terrain. Such references to real-world entities
should be precise and consistent.

Establishing this property reduces misuse of real-world entities by program
elements at compile time. Errors such as variables representing incorrect real-world

entities can be detected before execution of the programs.
e Property #3: Approximations caused by hardware are accessible by users

The differences or approximations introduced by hardware are crucial to software

systems, especially safety-critical ones. Many of these software systems have

58

Chapter 5 Establishing Properties

requirements on the accuracy of data. For such systems, approximation information
should be accessible by system experts for necessary inspection.

Establishing this property allows analysis of the differences caused by hardware.
The information can also be used to estimate the error in a variety of computations

throughout an entire software system.

e Property #4: Runtime values of program variables conform to real-world

constraints

In the real world, entities consistently observe real-world constraints, e.g., laws of
physics. The values of these real-world entities stay in a reasonable range. For
example, the value of latitude ranges from -90 to 90 degrees. In programs, however,
the runtime values of real-world entities could be random and do not obey the
constraints. Therefore, it is necessary to ensure these values stay in reasonable
ranges at runtime.

Establishing this property prevents programs from unwanted behaviors, thereby

reducing improper manipulations of entities in the real world.

5.2 ESTABLISH PROPERTIES

In order to establish these properties, four analysis techniques were developed.
e Real-world constraint checking
e Reasonable range analysis

e Targeted inspection

59

Chapter 5

e Runtime assertion generator

Establishing Properties

Table. 2 summarizes the analysis techniques with their intended properties and sources

in real-world types that enable the analyses. The details of these techniques are

described in the follow sections.

Table. 2. Analysis techniques provided by real-world type system

Property

Analysis Technique

Source of analysis

Program elements
conform to static real-

world constraint

Real-world constraint

checking

Real-world semantic attributes

Real-world type rules

Reasonable range analysis

Real-world semantic attributes

References to real-
world entities are

precise and consistent

Real-world constraint
checking

Real-world semantic attributes
Real-world type rules

Targeted inspection

Real-world semantic attributes

Approximations
caused by hardware

are accessible by users

Targeted inspection

Real-world semantic attributes
Relationships between real-world

entities and elements in logic

Runtime values of
variables conform to

real-world constraints

Assertion generator

Real-world semantic attributes

5.2.1

REAL-WORLD CONSTRAINT CHECKING

The first kind of analyses assures that logic statements conform to static real-world

constraints. This analysis technique is referred to as real-world constraint checking.

With an interpreted formalism, static real-world constraints and invariants of

concern are defined in the real-world specification. These constraints and invariants

specify the sets of semantic attributes that result from operations involving sets of

60

Chapter 5 Establishing Properties

semantic attributes. These constraints and invariants are to be checked throughout the
logic statements, and diagnostics displayed for the user identifying violations. Subsets
of the constraints can be checked separately if desired. For example, separate checking
of just the constraints for units might be useful.

The checking of static real-world constraints operates by assessing compliance of
the subject logic with the constraints. For example, adding a floating-point value
representing latitude (an angle) to a floating-point value representing longitude (also
an angle) is an error, despite the fact that both are floating-point and commensurable.
More importantly, even adding two variables of latitude is almost certain to be
meaningless. Adding an angle to a variable of latitude might be meaningful because
the addition might represent an update to latitude resulting from motion. Nevertheless,
that addition would also be meaningless if the latitude was measured in degrees and the
angle measured in radians.

In the constraint checking process, various difficulties arise and various choices
have to be made about how to deal with issues such as real-world type conversion. In
Chapter 0 summarizes the issues and discusses solutions in the context of Java and the

prototype implementation of real-world types.

5.2.2 RANGE AND REASONABLENESS ANALYSIS

Variables that manipulate real-world entities frequently have their boundaries or
restrictions from the point of natural science and common sense. For example, values

of latitude in degrees should be in the range of [-90,90]. The restriction should not be

61

Chapter 5 Establishing Properties

violated at any time. A real-world type system provides a capability to statically detect
violations of such restriction. In this dissertation, the range is referred to as reasonable
range. The detection mechanism is referred to as reasonable range analysis or range
analysis.

The underlying mechanism relies on the technique of interval analysis [23, 24, 50,
55, 80]. Reasonable range is a default semantic attribute in all real-world entity
specifications. Interval arithmetic uses these ranges to compute ranges for all variables
involved in scientific computations. If in any piece of the computation, the computed
range exceeds the reasonable range of the corresponding real-world entity, a warning
message will be issued, and an inspection suggested.

For example, for the program statement below:

final double roughLonSep = range / (60 *

Math.cos (Math.toRadians (point.getLatitude())));

The method point.getLatitude() has reasonable range of (-90, 907,
Math.toRadians (point.getLatitude()) has range of [-pi/2, pi/2]; SO that
Math.cos (..) has range of [0, 1]. Then, for the right side of the statement, interval
arithmetic produces a range with a high bound of +o0, but the left side is a central angle

of Earth with the range of (-90, 90].

5.2.3 ASSERTION GENERATION FOR RUN-TIME ASSURANCE

Some real-world constraints and invariants cannot be checked statically and have

to be deferred to execution time. These real-world invariants document relationships

62

Chapter 5 Establishing Properties

between real world entities of constraints on values. For example, an aircraft’s altitude
should lie between approval flight limits, and an autopilot should not command a pitch
up angle beyond a safe limit. Such restrictions are common, and assertions are
sometimes included in software logic to check them at runtime.

The richness of an interpreted formalism, e.g., the real-world specifications and
interpretations, leads to extensive execution-time checking. Where an entity is
implemented in logic with a machine type, its real-world specification and
interpretation specify details that can be turned into constraints for semantic attributes
that have accessible values such as numeric variables.

As an example, consider the use of the real-world entities latitude and longitude
measured in radians. Variables of these entities might use the floating-point type in
software logic, but the real-world specification documents the ranges. The real-world
specification could also document properties such as the maximum rate of change of
variables of these entities. Thus execution-time range checks can be generated for

assignments, and reasonableness checks can be generated for replacement values.

5.24 TARGETED INSPECTION

Careful inspection of software artifacts has proven to be a general and effective
mechanism for detecting defects. The availability of details in real-world specifications
permits inspections of how the software system interacts with the real world in a

systematic and comprehensive way. For example, variables used to hold values read

63

Chapter 5 Establishing Properties

from sensors and sent to actuators can be identified and selected for inspection and
analysis of details such as precision and delay.

The inspection based on an interpreted formalism is referred to as targeted
inspection. The concept is to use the information in the interpreted formalism to
identify locations in the program where human checking is needed. In general, all of
the variables of a given real-world entity can be identified and selected for inspection
to check for any details of interest. Since each real-world specification encapsulates the
semantics of real-world entities, detailed inspections of semantic issues can be
conducted. The natural language explication for a specification of a real-world entity
can be examined to ensure that all of the uses of variables of that entity are consistent
with the semantics.

As an example of targeted inspection, consider the notion of bearing in an avionics
system. Bearing is the angle to the east of west from the reference north. The reference
north could mean the true north or the magnetic north. A targeted inspection can
determine whether all the uses of bearing in the logic are consistent with the intended
use.

The second area of concern with altitude is the interpretation details between true
altitude and the available values in the logic. A targeted inspection can be used to
examine the approximation and ascertain by inspection and appropriate numerical

analysis that the logic values are adequate for the associated computation.

64

CHAPTER 6

6. DEVELOPING INTERPRETED FORMALISMS

Real-world type systems provide analysis techniques to establish useful properties
in software programs. The benefits provided by real-world type systems can be
substantial. However, the effort involved in creating and using a real-world type system
could be significant. Using a real-world type system requires developing its three
components: (1) real-world type definitions, (2) real-world type bindings, and (3) real-
world type rules. Each component requires a certain amount of effort.

This research developed a comprehensive framework to facilitate the development
of real-world type systems by synthesis. Fig. 13 shows an overview of this framework.
In this framework, development of a real-world type system starts with three sources:
(a) existing context documentation, (b) existing libraries of real-world type systems,
and (c) existing software application materials. All three sources can be used to produce
candidate artifacts of a real-world type system. Existing system documentation has
domain and linguistic models; existing real-world type systems can be reused as real-

world type libraries; existing software contains application materials such as source

65

Chapter 6

Developing Interpreted Formalism

code and documents. Candidate real-world type system elements produced from these

sources are reviewed by domain experts. Those candidates considered valid by experts

are then refined to construct a real-world type system.

In this chapter, all three sources of development materials are introduced and the

way they can be used to support creation of real-world type systems is discussed. A

collection of mechanisms is used to synthesize candidate real-world type systems from

applications materials.

Real-World
Type System

Supports

Analysis
Techniques

Establish
Real-World y properies
Real-World Defines : Types Connects, Software
Context Real-World Applications
Type Rules
? ? = Type <
Specify Specify Specify ER Bindings ' ; :
S Contains
--------------------------------------- R T
Linguistic Domain Real-World %’ 5 Sources of Application
Models Models Type Libraries| 2 & Development Materials
.. - SUs
Expert
Judgement

>

Type System
Candidates

Synthesizes

Fig. 13. Development of interpreted formalisms

66

Synthesis
Mechanism

Chapter 6 Developing Interpreted Formalism

6.1 SOURCES OF DEVELOPMENT

6.1.1 EXISTING CONTEXT DOCUMENTATION

Domain models and linguistic models can be used to characterize the domain
affected by software systems. They are important sources for producing candidate real-

world types and type rules.
e Domain models

Domain models identify key entities in an application domain and capture the
relationships among the entities. These models provide candidate real-world type
systems. For example, in order to develop a real-world type system for a flight
control application, a geographical or geospatial ontology is a useful source. Classes
and instances in the ontology are candidate real-world types, and properties and
restrictions in the ontology are candidate real-world type rules. In addition to
ontologies, other kinds of domain models such as UML models, requirements
models in KAOS [47], and i* [14], can also be used in creating real-world types and

type rules.
e Linguistic model

Linguistic models are another important source. The theories and results provided
by linguistics describe the abstract entities and processes manipulated by humans in
the process of achieving communications. Examining linguistic results allows

recognition of which entities and processes contribute to the outcome of

67

Chapter 6 Developing Interpreted Formalism

communications and in what ways. These entities and processes can significantly
improve the understanding of real-world context. The entities are ideal input
candidate for explications and semantic attributes inside real-world type definitions.

Connections between these entities are candidates for real-world type rules.

6.1.2 EXISTING REAL-WORLD TYPE SYSTEMS

Acrtifacts in real-world type systems are highly reusable. Real-world types and type
rules define characteristics of real-world entities, and those characteristics are unlikely
to change. Therefore, real-world types and type rules are ideal candidates for reuse.
The notion of real-world type library is introduced to be the major reusable unit. Each
library contains a set of real-world types and type rules, and each library serves a
particular purpose. For example, a real-world type library usually specifies a particular
domain, e.g., the geographic domain; a separate library might be specifically created
for unit consistency.

Real-world type libraries are involved both before and after developing a real-world
type system for a given software application. Developing its real-world type system,
real-world type libraries pertinent to the application can be referenced and reused. Real-
world types and type rules in the libraries can be directly plugged into a new real-world
type system. After a real-world type system is developed, newly created real-world
types and type rules are classified. The results are used to update existing real-world

type libraries or create new ones.

68

Chapter 6 Developing Interpreted Formalism

6.1.3 EXISTING SOFTWARE APPLICATION MATERIALS

A software application itself provides sources as well. A software application
contains various kinds of materials, such as source code, requirement documents,
design documents, bug history, and maintenance records. These materials support
creating a real-world type system. Concepts in these materials are candidates for real-
world type definitions. Relationships between these concepts are candidates for real-
world type rules. In the next section, mechanisms that extract candidates for real-world

type systems from application materials, e.g. source code, are discussed.

6.2 DEVELOPMENT OF REAL-WORLD TYPE SYSTEMS FROM

APPLICATION MATERIALS

Domain models, linguistic models, and real-world type libraries, demand effort
likely from other parties before the development of a new system can begin. Thus, in
many cases, when starting development of a real-world type system, domain models,
linguistic models, and real-world type libraries will be unavailable or incomplete;
therefore existing application materials are the only sources that can be relied upon.
Therefore, the real-world type system development framework focuses on developing
real-world type systems from application materials.

The framework:
e Synthesizes candidate real-world types and their semantic attributes.

e Infers real-world type bindings for program variables.

69

Chapter 6 Developing Interpreted Formalism

e Synthesizes candidate type rules from verified or trusted programs.

The mechanism starts with a software application’s source code. It collects identifiers
and programming patterns automatically and analyzes program statements in both
automatic and semi-automatic ways. With this information and a variety of reference
sources including ontologies, dictionaries, and other online resources, the synthesis

mechanism produces candidates of a real-world type system.

6.2.1 SYNTHESIS OF INTERPRETATIONS

An overview of the synthesis framework is shown in Fig. 14. Starting with a variety
of assets including the target application’s sources, other application documents, and
references (including ontologies, dictionaries, and other natural-language information),

the synthesis mechanism:
e Extracts candidate real-world type definitions from the subject software.

e Infers candidate type bindings from program statements for which developers have

high confidence, and from defined type inference rules.
e Extracts candidate type rules from a verified or otherwise trusted program.

The synthesis mechanism produces candidate artifacts that are potentially incomplete,
inconsistent, of no value, or otherwise deficient. For example, developers might have
used different identifier naming conventions. In order to determine which of the
candidates is of value, the synthesis phase is followed by inspection, selection, and

completion by software engineers and domain experts.

70

Interpretation Synthesis Infrastructure

Chapter 6

I

I

I e N

I

I

I

| Reference | ; 53

| Sources &

|)

o 3

| Application | N &

| Sources =
Qo

I 3

I : 2]

Domain

| Sources ‘ E’.

| =)
1

| &

| Natural ‘ , N

| Laws =

I

I

I —__

v

Human
Review

i

Reuse
Libraries

Synthesized
Interpretation

Type
Definitions

Type
Bindings

Fig. 14. Overview of real-world type system synthesis framework

Developing Interpreted Formalism

6.2.2 SYNTHESIS OF REAL-WORLD TYPES

TYPE SYNTHESIS PROCESS

Synthesizing a real-world type necessitates recovery of details of a complex,

composite entity. A real-world type consists of: (1) a real-world specification contains

attributes that describe the associated real-world characteristics, (2) a machine

representation that is relevant to the computation, and (3) a specification of the

relationship between the two. Significant challenges to identifying these structures

include:

¢ Distinguishing accurately between the three major elements of the composite entity.

71

Chapter 6 Developing Interpreted Formalism

o Determining whether the list of attributes is complete and accurate in the sense that

all relevant real-world characteristics are documented fully.

e Composing information about the same type that is spread across multiple sources
where there are slight variations in the information, such as text that includes both

singular and plural instances of a term.

For purposes of synthesis, we hypothesize that much of the necessary information is
encoded in the likely-existing “informal” interpretation, i.e., identifiers, comments and
other documents that programmers frequently prepare. Programmers usually follow
some widely known and commonly-adopted naming conventions. They follow the
same (often implicit) grammatical rules for names of program elements that are
structurally the same. These rules indicate the role of each term in a name. For example,
method names are often constructed from verbs that are followed by nouns, while
classes are frequently named as sequences of nouns.

By processing program source text, the synthesizer leverages these naming
conventions to generate a set of terms and linkages between the terms. Along with a
set of reference sources, these materials are used to create or select from a library a set
of candidate type definitions automatically. The synthesizer then supports a human-
analysis phase in which useful type definitions are selected from the candidates.

The steps followed by the synthesizer are illustrated in Fig. 15. The individual steps

operate as follows:

e Source Parser. The source parser parses the program source code and locates all of

the identifiers in use.

72

Chapter 6 Developing Interpreted Formalism

o ldentifier Parser. The identifier parser parses the identifiers using a grammar based
on the naming conventions, such as camelCase and underscores, and then, for each
identifier, produces a list of the words and acronyms present within the identifier.

We refer to these words and acronyms as terms.

(Source Code '

Source Parser

) <—l
Identifiers
4 ¥ Nami
\1/ Identifier Parser |« C amlr!g
onventions
)\ <—l .
Terms
SR |
-/ Rules &
\1/ Assembler < WordNet
Raw Ne | . —
Candidates)
S Selection
\1/ Slecior “ Criteria
: R
Refined Voo
Candidates
Interpreter | Ontological
(Human) - Concepts
e

Real-world
Types

Fig. 15. Synthesis of candidates for real-world types

e Assembler. For each term located in an identifier, the WordNet lexical database is
consulted to determine whether the term is a noun [78]. Nouns are referred to as
major terms and other terms as associated terms. For each major term, a list, the
term list, of associated terms that occurred with the major term in an identifier is

computed to form a term entry, a {major term, term list} pair. Terms in the term list

73

Chapter 6 Developing Interpreted Formalism

could be nouns, and so a single identifier could yield multiple-term entries. Multiple
term entries for the same major term are combined, and the frequency of occurrence
of the term across all identifiers is computed. Finally, the frequencies with which
each associated term in the term list occurred in the same identifier as the major term
are computed, and the entries are combined into a set of raw type candidates.
WordNet’s lemma is used to normalize every major term, i.e., plural and abbreviated
forms of the same term are merged. The report sums the frequencies of each major

term and frequencies of each term in the term list of a major term.

e Selector. The list of raw candidates synthesized by the Assembler contains a list of
major terms and a list of associated terms for each major term. The Selector
prioritizes the candidates based on a selection criterion. The selection criterion is

not fixed and several possible criteria could be used.

e Interpreter. The role of the Interpreter is to apply human insight to the candidate
types. Programmers and domain experts can review the prioritized list of candidates
and select important major terms as type names. The associated terms of a major
term suggest real-world attributes, and, again, programmers and domain experts can
refer to domain models, ontologies, personal experience, and application-specific

information to elaborate candidate types.

TYPE SYNTHESIS EXAMPLE

The following code snippet comes from the software application used in the case

study in Chapter 9:

74

Chapter 6 Developing Interpreted Formalism

timeToTOC = altToTOC/plan.getAircraft ()
.getClimbRate () /60;
altToBOD = altitude - to.getElevation();

The source parser extracts nine identifiers in total. Five of the identifiers come
from the first statement and the other four identifiers come from the second statement.

The identifier parser splits these identifiers into terms:

timeToTOC => time, to, TOC
altToTOC => alt, to, TOC
plan => plan

getAircraft => get, aircraft
getClimbRate => get, climb, rate
altToBOD => alt, to, BOD
altitude => altitude

to => to

getElevation => get, elevation

The assembler identifies the major terms and constructs the term lists. The major

term is shown to the left of colon and the term list to the right:

time, to, TOC => time : to, TOC
alt, to, TOC => alt : to, TOC
plan => plan : NONE
get, aircraft => aircraft : get

get, climb, rate=> rate : get, climb
alt, to, BOD => alt : to, BOD
altitude => altitude : NONE

to => NONE

get, elevation => elevation : get

75

Chapter 6

Developing Interpreted Formalism

The results for a single major term are accumulated, and the frequency of

occurrence of the major term and the frequencies of occurrence of the associated terms

are determined:

time (1)
alt(2)
altitude (1)
plan(l)
aircraft (1)
rate (1)

elevation(1l)

: to(l), TOC(1)

: to(2), TOC(1l), BOD(1)

: get (1)
: get(l), climb (1)

: get (1)

Finally, normalized forms of the same major term are coalesced based on likely

abbreviations, plurals, etc.:

time (1)
altitude (3)
plan(l)
aircraft (1)
rate (1)

elevation (1)

: to(l), TOC(1)

: to(2), TOC(1l), BOD(1)

: get (1)
: get(l), climb(1)

: get (1)

Here, the term alt is an abbreviation of a1titude, S0 the entry for a1t is merged

into the entry for a1titude.

The selector sorts the results of the assembler using a changeable criterion,

frequency in this example, to produce the list of type candidates:

altitude (3)

aircraft (1)

: to(2), TOC(1l), BOD(1)

: get (1)

76

Chapter 6 Developing Interpreted Formalism

elevation(1l) : get (1)

plan (1)

rate (1) : get(l), climb(1)
time (1) : to(l), TOC(1)

The interpreter (a human) then constructs a final list of type candidates. The
associated terms for each major term can help suggest real-world attributes:
Type 1 : time
Possible attribute : NONE
Type 2 : altitude
Possible attribute : reference point
Type 3 : climb rate
Possible attribute : direction of movement

Type 4 : elevation

Possible attribute : NONE

The associated term sop (bottom of decrease) appears with the major term
altitude. The term Bop refers to the lowest a1t itude, which could be either the local
ground or mean sea level. A real-world attribute reference point is useful for the
type a1titude. Similarly, the major term rate has an associated term c1imb. The term
climb implies the direction of the movement, and so for the type climb rate,

direction of movement IS likely one of the real-world attributes.

6.2.3 SYNTHESIS OF REAL-WORLD TYPE BINDINGS

The primary principle upon which candidate bindings are synthesized is inference.

Inference has to be “seeded” by an initial set of bindings created by developers, and

77

Chapter 6 Developing Interpreted Formalism

those bindings are then propagated algorithmically using a set of inference concepts and

an associated inference process.

BINDING SYNTHESIS CONCEPTS

The prototype supports three types of inference:

e Parameter inference. Parameter type bindings in method declarations are

propagated to arguments in method invocations.

e Return statement inference. Types bound to return values are propagated to

method signatures.

e Assignment inference. Type bindings in assignment statements are propagated

from one side to the other.

Fig. 16 illustrates the parameter inference approach. The individual steps are as

follows:

|

Interpreter

Trusted
Methods

Source Code '
J ; Y

4

Source Parser

Ne |
Method
Declarations &
Invocations
J v
Propagator

S

Bindings '

Fig. 16. Type binding inference from parameters to arguments

78

Chapter 6 Developing Interpreted Formalism

e Trusted method selection. Users select a list of methods that they trust, i.e.,

methods of which all invocations are assumed to be coded correctly.
e Invocation location. All invocations of the methods in the list are located.

e Parameter and argument location. A parser produces an abstract syntax tree for
the program. For method declarations, the parser retrieves parameters and their real-
world types. For method invocations, the parser locates the arguments so that the

binder can process them in the next step.

e Binding. The parameter types are bound to the corresponding arguments. If an
argument has been bound previously to an inconsistent real-world type, an error

message is issued.

As an example, consider the following method declaration:

void setLatitude (double 1) {

this.lat = 1;

The parser determines that the real-world type for parameter . is
latitude geocentric as set by the user. Two invocations are located in the source

files:

double latl, lat2 = 0;
setLatitude (latl) ;

setLatitude (lat2);

79

Chapter 6 Developing Interpreted Formalism

The type latitude geocentric IS bound to variables 1at1 and 1at2. These
bindings will persist so that subsequent analyses will consider 1at1 and 1at2 as
variables of known type 1atitude geocentric.

For return statements, a real-world type might have been bound to the return value
of the method. If this is the case and if the method declaration contains only one return
statement, then the return type of the method signature will be bound to the same type.

Assignment inference can exploit many different heuristics, and the prototype
synthesis mechanism uses two. In the first, if either side of an assignment has a real-
world type binding but the other does not, then the unbound side is bound to the same
type as the bound side.

The second inference heuristic is based on a simple pattern matching approach. The
algorithm accumulates details of assignment statements in which the right-hand side of
each assignment is bound to the same single type and the left-hand side is unbound
except for a single instance. If the total number of such assignments exceeds a
threshold, then all of the left-hand sides are bound to the type of the single bound left-
hand side. Clearly, a wide variety of machine learning techniques could be used to

improve assignment inference.

BINDING SYNTHESIS PROCESS

The binding inference process combines seeding steps with inference steps in an
attempt to bind as many program entities as possible. The process is organized into
three stages: (1) the field stage, (2) the method stage, and (3) the local variable stage.

Each stage focuses on a single type of program element and combines seeding with the

80

Chapter 6 Developing Interpreted Formalism

use of one or more inference concept. The process is iterative and inference steps are
repeated in sequence until no new bindings are generated.

Field stage. In this stage, developers seed bindings to fields in class definitions.
Classes frequently contain “get” and “set” methods for these fields, and types can be
bound to these methods if the field is bound. After developers bind real-world types to
all of the fields in class definitions, return statement inference and assignment inference
can be invoked. For example, consider this class:

public class location({

double latitude;
private double getLatitude () {

return latitude;

}
private void setLatitude (double lat) {

latitude = lat;

Developers might bind the type 1atitude geocentric to the variable 1atitude.
Return statement inference would generate bindings for return values of methods
similar t0 getlatitude, and assignment inference would generate bindings for
variable similar to 1at in methods similar to setLatitude.

Method stage. In this stage, developers seed real-world type bindings to

parameters of method declarations. For example, consider this method signature:

public double distanceTo (

double latl, double lonl, double lat2, double lon2)

81

Chapter 6 Developing Interpreted Formalism

Bindings can be seeded for variables 1at1, 1at2, 1on1 and 1on2. After binding
types to method parameters, parameter inference can be used to generate bindings for
method invocations throughout the application.

Local variable stage. In this stage, developers seed type bindings for local
variables. After seeding a small set of bindings, assignment inference and return
statement inference can be used to generate more bindings. For example, consider this

code snippet:

getLocalLatitude () {

double latl = 0.0;

double lat3 latl;

return lat3

If the developers bind the real-world type 1atitude geocentric to variable 1at1
and then apply inference, the type 1atitude geocentric will be bound to the variable
1at3 through assignment inference, and the type 1atitude geocentric Will be bound

to the method return value of getTocalLatitude by return statement inference.

6.2.4 SYNTHESIS OF REAL-WORLD TYPE RULES

The third phase in the synthesis of the real-world type system is to recover the type
rules, i.e., to determine the legal operations involving variables of the various real-
world types and the types of the results of those operations. This phase is based on the

hypothesis that, for an existing program that has been developed and verified carefully,

82

Chapter 6 Developing Interpreted Formalism

the implied use of real-world types in the program is largely correct. Thus, inferring
rules from such a program is likely to be successful. Also, many general templates
based on unary operators (such as negation) and binary operators (such as addition)
need to be instantiated frequently.

The mechanism in the framework proceeds in three steps shown in Fig. 17:

Source Code
Files

e Verification
Verification |« Methods
4)
Trusted Source -
Code Files
| .
g B Candidate
Source Parser |« Types
(" Operations e |
Involving
__Candidates /— % Seroction
Selector - Criteria
4 N\ L
Candidate Type -
Rules
J ¥
Interpreter | Real-World
(Human) A Concepts
Type Rule
Repository

Fig. 17. Synthesizing real-world type rules

o Verification. The verification step checks the available source files and selects

those for which there is reasonable assurance of adequate verification.

e Selector. Candidate type rules are formed by collecting details of all operations
involving entities with real-world types including the operation, the real-world types

used, and the frequencies of each particular combination.

83

Chapter 6 Developing Interpreted Formalism

e Interpreter. As in type synthesis, programmers and domain experts review the

candidate type rules and select those considered valid.

84

CHAPTER 7

/. PROTOTYPE IMPLEMENTATION

If interpreted formalisms are to be used in the development of realistic software
systems, an approach to integrating them into widely-used languages and development
methods is needed. This necessity demands tools that support the approach. This
chapter introduces a prototype designed and developed to support interpreted
formalism in the form of real-world type systems for Java.

In order to develop and apply the idea of the interpreted formalism in software
practice, a pragmatic design of systems for interpreted formalisms that developers can
follow is needed. For pragmatic purposes, a design choice was made that interpreted
formalisms should be developed, inspected, and analyzed without requiring changes to
the subject logic, i.e., the software of intent. This choice provides three major

advantages:
¢ |Interpreted formalisms do not obscure the basic structure of the logic.

e Interpreted formalisms can be added to existing logic without having to modify (and

possibly break) the original logic.

85

Chapter 7. Prototype Implementation

e Interpreted formalisms can be added to logic without impeding the development of

the logic itself.

Motivated by this design choice, systems of interpreted formalisms should hide the
internal representation of interpreted formalisms and hide the internal structure of the
system from the users. Users are provided with a straightforward viewpoint in which
they can focus on developing and analyzing interpreted formalisms.

From the users’ viewpoint, development of real-world specifications and
interpretations are independent to the development of logic. In this manner, the
development process of each piece of interpreted formalism can be highly parallel and
incremental without impeding each other.

In the following two sections, the design of the Java prototype is introduced first,

and then the detailed user interfaces of the prototype are presented.

7.1 DESIGN OF THE JAVA PROTOTYPE

Based on the design choice stated above, a Java prototype is designed and
implemented for interpreted formalisms in the form of real-world type systems.

In general, this prototype allows users to conduct two activities:

e Develop real-world type systems for software applications of interests. This
activity includes developing real-world type definitions, real-world type rules, and

real-world type bindings. Since development of real-world type systems has

86

Chapter 7.

Prototype Implementation

multiple starting points, different development methods are provided to support

different starting points.

e Use analysis techniques provided by real-world type systems. Various kinds of

analysis techniques are supported. Results of the analyses are presented with

diagnostics and causes.

Interpreted Formalism Development

Svnthesis Mechanism

Interpreted formalism
synthezer

Syntheized mterpreted

formalism

1

1

Java Program Binding RW Specification
Development Development Development

|

—

W_.I

—

7

Interpreted Formalism

S

e
n '
! Interpretation)
1
Java Source * T | Program [« | Relationship |e— RW !
1 NI S “ .« . > Er oM et
Program 4 ' Entities le—> | Specification |«—| specification)
' Z
Interpreted Formalism
Java Parser IF Analyzer ¥ ;,:r\.;r ’

i

|

Constraint
Checker

Range Analysis

Inspection Mode

Assertion Generator

—

L

i}

v

H

User Interface

Fig. 18. Design of the Java prototype

87

Chapter 7. Prototype Implementation

The structure of the prototype is illustrated in Fig. 18. The development of the
interpreted formalism is shown at the top of the figure. Interpretations and subject Java
source programs are shown in the middle of the figure. The analyzer of interpreted

formalisms is shown at the lower part of the figure.

7.1.1 USE OF THE PROTOTYPE

In the prototype implementation, the interpretation is accessed via the user interface

enabling:

e The establishment and display of bindings between items in the Java program and

real-world type definitions in the interpretation.

Selecting an entity in the Java program that is to have a real-world type (clicking on
the text) and selecting the particular real-world type to be used (clicking on the type
name) establishes a binding. This binding corresponds to concept of real-world type
binding introduced in section 4.3.1. In this prototype, the bindings are often referred
to as annotations. These annotations can be displayed as comments in JavaDoc of

Java programs.

¢ Reference to the details of the interpretation.

All definitional aspects of the real-world types and all bindings to Java entities can
be displayed. The set of bindings can be displayed in various ways, e.g., all bindings,
binding of a given Java entity, all Java entities bound to a particular real-world type,

etc.

88

Chapter 7. Prototype Implementation

ANALYSIS TECHNIQUES

To support analysis of the system, a custom parser produces a representation of the
subject Java program as an abstract syntax tree, and the implementation of the
interpretation produces a database that documents all of the details of the interpretation.
The abstract syntax tree and the details of the interpretation are processed by an

analyzer shown in the center of the figure that supports four types of analysis:

e Real-world constraint checking. A constraint checker was implemented for this
analysis. It loads the real-world constraints, examines the parsed subject Java
programs, and then statically checks for violations of real-world constraints.

Diagnostics are displayed for user to confirm.

e Reasonable range analysis. A range analyzer was implemented to conduct interval
analysis on the source programs. Warning messages are issued when calculated

intervals of program elements exceed their reasonable ranges.

e Assertion generation. The assertion generator synthesizes assertions as Java
fragments that can be inserted into the subject program to implement runtime

checking of real-world invariants that cannot be checked statically.

e Targeted inspection. The inspection mode provides a display allowing all
interpreted Java entities to be traced to their interpretations. Definitional aspects of
the real-world specifications and all interpretations to Java entities can be displayed.
It also synthesizes a checklist of locations in the subject program at which human
inspection is required to check real-world constraints or invariants that cannot be

checked statically or dynamically.

89

Chapter 7. Prototype Implementation

DEVELOPING AN INTERPRETED FORMALISM

As indicated by the top part, Java programs are separately developed and parsed
without being affected by the development of interpreted formalisms. In this way, the
two artifacts can be developed in parallel without impeding each other. Engineers can
manually create interpreted formalisms through user interface. In addition, the

prototype implements two features that facilitate developing interpreted formalisms:

e Synthesis of interpreted formalisms. The concept of synthesis has been introduced
in Chapter 6. The prototype has mechanisms that implement the synthesis
framework. Specifically, three mechanisms were developed: (1) synthesis of
candidate real-world types, (2) synthesis of real-world type rules, and (3) synthesis

of real-world type bindings.

e Reuse interpreted formalism. EXxisting real-world type systems can be reused
instantly for developing new real-world type systems. In this prototype, real-world
types and type rules are stored as text files and can be readily reused in other real-

world type systems.

REPRESENTATION OF AN INTERPRETED FORMALISM

The middle part of Fig. 18 shows that an interpreted formalism is composed of Java
source programs and an interpretation. The interpretation comprises (1) a real-world
specification and (2) a relationship specification that document the relationships

between real-world entities and relevant program entities.

90

Chapter 7. Prototype Implementation

7.1.2 TYPED PROGRAM ELEMENTS

Software entities that have real-world meanings should be interpreted with their
real-world specification. In the context of a real-world type system, these software
entities are bound with real-world types. The Java prototype covers most of these
software entities. In the prototype, the Java entities being bound with real-world types
are: (a) local variables, (b) fields in classes, (c) method parameters, (d) method return
value, and (e) class instances. In order to make the development of the prototype
tractable, the current version imposes some restrictions on the use of interpretations in

Java, specifically:

e Fields. Fields in classes are assumed to be monomorphic, i.e., a field in a class is
assumed to have the same corresponding real-world entity in all class instances.
Fields are interpreted with real-world specifications inside the class declaration

body.

e Class instances. Different instances of a class might have different real-world
meanings and so the interpretation is of the instance, not the class. For example,
suppose a class Point has three fields x, y, z. Further, suppose that ptl and pt2 are
both instances of Point but are from different coordinate systems. Writing a
statement that involves both pt1.x and pt2.x such as pt1.x + pt2.x might be an

error and so the two instances need to be distinguished.

e Method return value. Each function with a return value is interpreted with a real-
world specification. If a particular method is not interpreted with a real-world

specification, the analysis treats the method as polymorphic. For a polymorphic

91

Chapter 7. Prototype Implementation

method, at each invocation site, all the expressions in the method declaration body
are examined to determine the real-world type of the return statement. That
ultimately will be the real-world type of the method invocation. If the method
contains multiple return statements, the interpretation for the return value will be the
one with no errors. Also, if interpretations for return statements are inconsistent, a

warning message is issued.

e Arrays. Since individual array elements cannot be interpreted separately, all objects

inside an array are treated as having the same interpretation.

e Constants. Variables are interpreted when declared, but constants are used as
needed. Constants are dealt with simply by associating each one with a hidden

variable and associating an interpretation with the variable.

e Compound objects. Class instances introduce the possibility of nesting of interpreted
real-world entities because the class might have an interpretation and the fields
within the class might have interpretations. In that case, the real-world specification
of a qualified name is the union of the specifications of all the elements in the path
to a specific item of interest in an expression. This same rule applies to method

invocation where fields are retrieved such as cs2.get x () ;

7.1.3 TyYPE CONVERSION

An important issue in the prototype is the conversion between real-world types. For
example, a variable whose real-world type indicates that the measurement unit is “feet”

could be switched to a different measurement unit, say “meters”; by calling a function

92

Chapter 7. Prototype Implementation

that effects the switch, multiplying by a constant, or multiplying by a variable. Each of
these mechanisms could be implemented as standalone assignment statements; within
other expressions, as expressions stated as actual parameters, as return values, and so
on.

The prototype analyzer deals with explicit interpretation conversion simply by
including conversion rules associated with whatever special operator or function is
used. For example, a conversion function is documented as taking one real-world type
as its input parameter and a second real-world type as its return value.

Implicit type conversion is more difficult. Conversions between real-world types
can be syntactically simple. For example, a conversion from feet to inches requires
multiplying a variable storing a value in feet by 12, and the constant might not be
identified specifically to support analysis. The difficulty lies in locating such
conversions automatically without generating false negatives.

Implicit type conversion is dealt with in the prototype by requiring that the
programmer investigates each diagnosed error and mark implicit type conversions as
such. Thus, diagnostics will be generated for type conversion of which the prototype
was unaware, because the mismatch appears to be a violation of the real-world
constraints. In those cases, the programmer suppresses the diagnostic by indicating that
there is an expected implicit conversion. By doing so, the programmer indicates that

the diagnostic has been investigated and the code found to be as desired.

93

Chapter 7. Prototype Implementation

7.14 POssIBLE ERRONEOUS STATEMENTS

Real-world constraint checking and range analysis are the two primary analysis
techniques implemented in the prototype. They analyze the abstract syntax tree of the
source code, inspect every node in the tree, and discover possible violations of real-

world type rules. Violations are reported in the following syntactic structures:

e Assignment and VariableDeclarationStatement. In these two kinds of expressions,
the real-world types for the left-hand side and right-hand side could be inconsistent.
For example, assigning a variable of latitude to a variable representing longitude is
inconsistent. Analysis techniques issue error reports when the two sides are

inconsistent.

e InfixExpression. The infix expression involves calculations of different variables.
The computation could be wrong. The prototype assumes a calculation is disallowed
if no real-world type rule permits it. For example, the expression 1at - 1on, intends
to compute the difference between two latitude values, but mistakenly refers to the
variable of longitude. This error will be detected by the analysis of constraint

checking.

e MethodlInvocation. Typically, a method or a function has real-world types bound
with its function parameter(s). When the function is called with a set of arguments,
analysis techniques check if real-world types of the argument(s) are consistent with
the real-world types of the parameter(s). For example, the function

distanceTo (float lat, float 1lon) expects latitude and longitude values of

94

Chapter 7. Prototype Implementation

units radians. If a method invocation distance (1at1, 1lon2) has arguments 1at1

and 10n2 of units degree; an error is issued.

e ReturnStatement. Frequently, a method or function has its return value bound with
a real-world type. The constraint checking analyzes the body of the function, check
if one (or all) of the return statements is bound with the real-world type declared for
the return value. For instance, if a method returns void while it declares returning a

valid real-world type, an error message is issued.

7.2 JAVA PROTOTYPE USER INTERFACES

This section describes details of the Java prototype. The prototype is named
CMTypeChecker, and is implemented as an Eclipse Rich Client Platform (Eclipse
RCP). The prototype is about 25,000 line of code, is composed of 136 source files, and
is organized in 20 packages. The figure below shows a snapshot of startup page of the
prototype.

The term CMType is just an old name for the real-world type. The two names of
CMType and real-world type can be used interchangeably. The red boxes in Fig. 19

mark a few important components implemented in the prototype.

95

Chapter 7. Prototype Implementation

M.

! & CMTypeChecker.CMTyp: p/src/com/bbn/openmap/tools/roads/Road.java - Eclipse Platform -

Refactor Navigate Search Project Run Window Help

Hev O Qi@ 7 iR

pective -
| File Edit Source

TS I - ~

Ouick Access I}

ot g =
ST EE

5% | [Resource [CMTuneChecker.PerspectiveName) CMTypeChecker.CMTypeAnnotatii

= Undo Ctrl+Z =
| [P 2 = B | i) Roadjava & Revert File I‘. Sl sl II - _ i
E&|e T »E>» B> B> BRoad b @ getlocatior Save Ctilss v CMTYPE List
#} com.bbn.openmap.layer.nit A v (= latitude_deg
i com.bbn.openmap.layer.plc b def Open Declaration F3 [Z] Iatitude_geocentric_deg
#3 com.bbn.openmap.layer.po « def Open Type Hierarchy F4 [Z] Iatitude_geodetic_deg
i} com.bbn.openmap.layer.pf " el Open Call Hierarchy Ctrl+Alt=H ve i‘“:_:»:d "
i * def s itude_geocentric
M\ com.bbn.apenmap ayer shy) Show in Breadcrumb Alt+Shift+B fesl “
4% com.bbn.openmap.layer.sh def ; ; [5] tatitude_geodetic
} it} com.bbn.openmap.layer.ter - gLt Quick Outline Ctrl+O [Z] colatitude
5 3 com.bbn.openmap.layer.tes - Quick Type Hierarchy Ctrl+T [Z] longitude_rad
i com.bbn.openmap.layer.vpi "“"1;° i“;"?ﬁ’zm“ 9;‘“" Open With S [Z] longitude_deg
atLonPoin revPoin -
| i com.bbn.openmap.omGrap A P 1 Show AT v (&= Earth_r.adlusjfm
i} com.bbn.openmap.omGrap A v (= major_radius
i com.bbn.openmap.omGrap = Cut Ctrl+X equatorial_radius_int74
® O e 5 - e equatorial_radius_wgsed
fﬂ com.bbn.openmap.omGrap e Copy Ctrl+C _— mmoqr o g
i com.bbn.openmap.omGrap ey 4 Coby Qualifisd Naae & minor_radius B
i} com.bbn.openmap.omGrap N -
i com.bbn.openmap.omGrap Paste Ctrl+V Attribute Type
i# com.bbn.openmap.omGrap Quick Fix Cds1 unit radians
earth_model ellipsoidal
i com.bbn.cpenmap.omGrap Source Alt+Shift+S > 2 pEONS
it} com.bbn.openmap.omGrap) latitude_type geocentric
i com.bbn.openmap.plugin Refactor AlShiftele orientation horizontal
com.bbn.openmap.plugin.e Local History > zero_circle equator
if com.bbn.openmap plugin.e e 5 basic btode
i} com.bbn.openmap.plugin.g e R dimension angle
3 com.bbn.openmap.plugin.s Seamnon feasiable_range -1.57,1.57
4 com.bbn.openmap.pluginw £ AddtoSnippets..

i com.bbn.op p.proj

#3 com.bbn.openmap.proj.coo |

[® piagrose view 2 |

I CM type checker I >

Number of annotations in this file

i3 com.bbn.openmap.time Run As > M tats it
;2 ik s Error AST Node Error Type Errc " RS SRR
% com.bbn.openmap.tools . . Debug As > Type Propagation
54 com.bbn.openmap.tools.be GreatCircle.spherical.. ~ Error the § sy
| > & com.bbn.openmap.tools.dn Kilometers+=GreatCir... Warning Unc Validate ganoatonGiide
| i3 com.bbn.openmap.tools.dr: getLengthinKilometer... Warning Unc & Create Snippet... Turn On/Off All Annotations
4 com.bbn.openmap.tools.icc GreatCircle.spherical... Error the Team > Interval Analysis
v [} com.bbn.openmap.tools.ro: thisLength >= kilome... Error Typ Compare With > Type Checking with JAVADoc
Iy i il i
17} Intersection java kilometers / thisLength Warning Unc Replace With > Type Checking Phase Zero
1B LayerView.java v 3
2 = Units Checking
% , % references... o

Fig. 19. The Java prototype

CMTypeChecker is organized as one Eclipse perspective extension, two popup

menu extensions, two wizard extensions, and four view extensions [87]. Table. 3 below

summarizes their extensions and their purposes.

Table. 3. Prototype as Eclipse RCP

Eclipse Extension

Component Name

Purposes

Eclipse Perspective

CMTypePerspective

The main interface when the prototype

starts

Java Editor

Eclipse Popup Menu in

CM Type Checker

All checking capabilities are triggered
from this menu:

(1) Real-world constraint checking

(2) Units checking

96

Chapter 7.

Prototype Implementation

(3) Reasonable range analysis

(4) Inspection mode

(5) Switch displays for real-world type
bindings

Eclipse Popup Menu in
Resource Navigator

CM Type Facilities

All synthesis framework capbilities are
triggered from this menu:

(1) Synthesis mechanism

(2) Analysis on a package or a project

(3) Config the real-world type system

Eclipse View Concept Detail View | (1) Display the details of specification for
a real-world entity;
(2) Display the explication of a real-world
entity
Eclipse View CM Type View (1) Trigger the wizard of creating new real-
world types;
(2) Display the tree of all real-world types;
(3) Display semantic attributes of a
specific real-world type;
(4) Bound real-world types to elements in
a Java program;
(5)Find all occurrences of a real-world
type
Eclipse View CM Type Rule View | (1) Trigger the wizard of creating new real-
world type rules;
(2) Display the defined type rules in
current Java project
Eclipse View Diagnose View (1) Display the diagnostics produced by

analysis techniques;

(2) Trace the sources of the diagnostics

Eclipse Wizard

CM Type Wizard

Wizard that allows users to create,

manage, and delete real-world types.

97

Chapter 7. Prototype Implementation

Eclipse Wizard CM Type Rule

Wizard

Wizard that allows users to create,

manage, and delete real-world type rules.

7.2.1 Popup MENU: CM TYPE CHECKER

The popup menu CM type checker is an Eclipse extension on the default Java editor.
The popup menu contains menu items that trigger all analysis techniques, including
real-world constraint checking, units checking, reasonable range analysis, and
inspection mode. It also contains a menu item that can switch on and off the display of

real-world type bindings. The figure below shows the popup menu and its items:

nAtKilometer (float ki Refactor Alt+Shift+T >
2oints([0] .getLocation(Local History >
c.getLatitude();

c.getLongitude() ; References >

cs.length; i++) {

c = points([i]).getLocat
foint.getLatitude();
Point.getLongitude()

reatCircle. sphericalDi CM type checker > Number of annotations in this file |
Run As > Mining annotation patterns ‘

Debug As > Type Propagation i

Validate Annotation Guide {

sage Create Snippet... Inspection Mode on/off ;
pes of arguments are conflict witk Team > Turn On/Off All Annotations \
ype calculation: there is no type n Compare With > Interval Analysis ‘
ype calculation: there is no type rt Replace With b Real-World Constraint Checking !
pes of arguments are conflict witk - Units Checking ‘
references... — |

nsistency; left hand is typed basic
ype calculation: there is no type n

Declarations

Add to Snippets...

Ctrl+ Alt+Shift+ Do

>

Fig. 20. Popup menu: analysis techniques

In the figure, the menu contains five menu items. Their functions are:

e Inspection Mode on/off. The menu item triggers inspection mode. When the

inspection mode is on, users can readily trace real-world types that correspond to

98

Chapter 7. Prototype Implementation

program elements. The details of real-world types are displayed in a tooltip when a

mouse click is pressed to a program element, e.g., variable, function.

e Turn on/off All Annotations. This menu item is used to switch display of real-world
type bindings. As indicated in Fig. 20, some comments started with tag name
@CM are displayed in the Javadoc. These comments can be switched off by this

menu item if engineers prefer not to see these comments.

e Interval Analysis. This menu item triggers reasonable range analysis on the source

programs. Candidate errors are displayed in the diagnose view.

e Real-World Constraint Checking. This menu item triggers real-world constraint
checking on the source programs. Candidate errors are displayed in the diagnose

view.

e Units Checking. Units checking has been studied extensively by other researchers.
Therefore, in this prototype, units checking is implemented as an independent

function that can be triggered by this menu item.

71.2.2 Popup MENU: CM TYPE FACILITIES

The popup menu CM type facilities is an Eclipse extension on Project Explorer of
Eclipse. The popup menu contains menu items that trigger all synthesis framwork
techniques. Several menu items are created to analyze all source files in the current

project.

99

Chapter 7. Prototype Implementation

Fig. 21 shows the popup menu and its items. In the figure, the rectangle contains 7

menu items. Their functions are:

e Interval Analysis all files. The menu item conducts reasonable range analysis on all
source files in the project. The results of analysis are recorded in a .csv file. The user

then inspects the files which have errors reported.

e Units checking all files. Similar to the menu item above, this menu item triggers

units checking analysis on all source files in the project.

e Type checking all files. This menu item triggers real-world constraint checking

analysis on all source files in the project.

e Extract CM Type patterns. This menu item collects the programming patterns in the
whole project and attempts to discover programming patterns. At this stage, the
pattern is limited to only one kind: two or more real-world types appear in the same
function. If a pattern exists, program statements that violate such a pattern might be

erroneous.

e Setup real-world type system location. The other menu items are used to display and
setup the location of real-world type system for the current project. Real-world types
and type rules are stored as files by the prototype. Setting the location of real-world

type system is in fact choosing a folder in the local file system.

100

Chapter 7.

[Project Explorer 52 | 8% Outline = m
== ‘ ® v
3 au.com.kelpie.rcpplanner
J geoAPI
J geoTools
1J jts_topology_suite
J NOMAD
v f};:-d openMap [cas -+t mmmmtest
i src New
> (o milStd2525] Go Into
{ora ba,j
= om_cor_a)a Show In
(o omj3d.jar
3'0 omsvgjar [Copy
» [0 OPENMAPJE (= Copy Qualified Name

(o jai_codec-1
I ™ Paste

=), JUnit 3 -
=) JRE System € Delete
> [y lib Remove from Context
Build Path
Refactor
Ly Import...
g Export..
& Refresh

Close Project

Close Unrelated Projects

Validate

Run As

Debug As

Team

Compare With

Replace With

Restore from Local History...
Real-World Type facilities

Canfinnre

Prototype Implementation

1J] Roadjava £2 =

»

> ﬂ Road P @ getTraverseHours() : float

R

) |8
5 0

*
*

private boolean selected = false;

D O O M W
W N}

rs

>

flag for this road
Alt+Shift+W > boolean blinkState = false;
Ctrl+C
Ctrl+V
Delete

Ctrl+Alt+Shift+ Down

» b _from rthe intersectinn from which this rnad]
Alt+ShifteT > Type Inference based on rules in files
Type Inference from Return types to Method Signiture
Type Inference for Assignment
Type Inference from Parameters to Arguments
£ Extract itemset with methods contents involved

Annotation pattern miner
Type propagation the project
Extract terms as candidate real-world types

> Interval analysis all files

> Units checking all files

> Type checking all files

> Extract CM types patterns

> Show Current Correspondence Model Location
Show the statistic of the project

> Config Corre_seondence Model Location

s [

Fig. 21. Popup menu: synthesis framework mechanisms

7.2.3

EcLipse VIEw: CM TYPE VIEW

CM Type View is a view extension to Eclipse created to manage real-world types.

The view has a popup menu that supports a list of functionalities. The figure below

shows the popup menu and its items.

101

Chapter 7.

| & CM Type View &2 | ® CM Type Rules View)

f spherical_distance(float, float, float, float) : float

lambda0l,

phi,

lambda) ;

loat spherical-distance(float phil, float 1:
float phi, float lar
phi, lambda):

‘istance(phil, lambdaO,

Prototype Implementation

v (= CMTYPE_List A
A v (= latitude_deg
i latitude_geocentric_deg
j latitude_geodetic_deg
v (= latitude_rad
[Z2] Iatitude_geocentric
[Z] latitude_geod (=> reload CM types
=% colatitude > Bind to this type
L:f Iongftude_rad = Persist the type in xml file
|s longitude_deg
v (= earth_radius_nm Team >

major_radius|
|s5| equatoria

v =

j equatoria)

Persistent annotations in source code to file

turn on/off annotations

show all variables binded to the CM Type
Generate all assertions in annotation

Mark this type as primary type for all subtypes

=)
v (= minor_radius{
Attribute Type :
unit radians Loz
earth_model ellipsoidal
latitude_type geocentric
orientation horizontal
zero_circle equator
basic latitude
dimension angle
), feasiable_range -1.57,1.57

Fig. 22. View: CM type view

There are three rectangle boxes in the figure. One rectangle marks the name of CM

Type View; one rectangle contains the popup menu, and one small rectangle triggers

the wizard for managing real-world types. The major functionalities supported are:

e Display real-world types. All real-world types are displayed in this view. They are

organized as a tree structure. When a real-world type in the tree is selected, its

semantic attributes are displayed in the table below the tree.

Reload CM types. Right click on a real-world type pops a menu. The first item in

the menu is reload CM types. This menu item can refresh the tree of real-world types

and reload the contents of real-world types.

Bind to this type. This menu item allows users to bind the selected real-world type

to the program element clicked in the Java editor. This is the main approach of

102

Chapter 7. Prototype Implementation

creating real-world type bindings. The bindings can be displayed as comments in

JavaDoc.

e Persist the type in XML file. This menu item saves the clicked real-world type to an

external XML file for easy read and transfer.

e Persistent annotations in source files. Sometimes, users may prefer that real-world
type bindings are displayed in the comments which reside within the source code.
In this way, users can easily manage real-world type bindings. This menu item

allows users to save all bindings they created in comments.

e Turn on/off annotations. This menu item can change the display of real-world type

bindings in source code, as introduced in the popup menu for Java editor.

e Persist the type in XML file. This menu item saves the clicked real-world type to an

external XML file for easy read and transfer.

e Show all variables bound to a real-world type. This menu item shows all program

elements that are bound to the clicked real-world type.

The small rectangle in the right top of Fig. 22 triggers the wizard of real-world
types. Fig. 23 shows the wizard. Users can create, modify, organize and delete real-
world types. In the left pane, real-world types for the current project are organized as a
tree. In this right pane, real-world semantic attributes can be added, modified, and

deleted. Also, a real-world type can be linked to its explication.

103

Chapter 7. Prototype Implementation

= m] x |

New Correspondence Type Wizard page 1

This wizard creates a new correspondence type.

Project: openMap “ Browse... i
Existing CM types
CM Types Type Detail: latitude geocentric
v (= CMTYPE_List ~ | The concept explication for this CM type:
v & latitude deg ‘ link to Concept
E latitude_geocentric_deg
[7] latitude_geodetic_deg Attribute Type Enable o~
v (= latitude_rad unit radians y
;J latftude_geocer{tnc earth_model ellipsoidal y
,:J Iatltu‘de_geodetlc latitude_type geocentric y
|os) colatitude x 5 :
= z orientation horizontal y
|¢%) longitude_rad - g
= 2 [A zera circle _eauator v
|o%| longitude_deg = 7
v (= earth_radius_nm Approx type Infor
v [major_radius Approximate Property Value Description
[%] equatorial_radius_int74
[%] equatorial_radius_wgs84
v (= minor_radius
[Z] polar_radius_wgs4
[=] nalar radius int74 Y
< >
Apply Changes all tainting Clear Dimension Dimension and unit
select this att
©

Fig. 23. Wizard: CM type wizard

71.2.4 EcLipse VIEwW: CM TYPE RULES VIEW

CM Type Rule View is a view extension to Eclipse created to manage real-world
type rules. Fig. 24 shows the view. There are two rectangles in the figure. One box
marks the name of CM Type Rule View, and the other triggers the wizard of CM Type
Rules Wizard. The view is in a table format that displays all the type rules defined for
the current project. Fig. 25 shows a screenshot for the wizard. Real-world types are
organized as a tree in the left pane. In the right pane, users can select an operator from
a list of operators; then choose operands and return type from the tree of real-world

types in the left.

104

Chapter 7. Prototype Implementation

| B9 | [y Resource [CMTypeChecker. iveName | CMTypeChecker.C
GreatCirclejava 53 = B | @ CMTypeView [@ CM Type Rules View 32

» % > i > @ GreatCircle » & spherical_distance(float, float, float, float) : float &

(double) lambda0, A Operation Operand 1 Operand 2 A
(double) phi, [Elassianabl basic=clevatio... [F) dwisi i

double) lambda); - =
90} : > : [Hassignable 2] earth_model=...
a5 ssignable multiplication(..
928 fww ') basiczangle;d...
a3 . ise’ sphericalDistance’ ingtead, [Z] comparable [Z basic=interval ... [%] basic=arc dista...
94 * @M return angular distance_rad [& basic=interval .. [basic=arc dista...
95 * 1 def cmt(phil)=latitude_rad o] half Pl
96 * (lambda0) =longitude_rad half_pI

(phi)=latitude_rad
omt (lambda) =longitude_rad

basic=arc dista.

basic=latitude;...
unit_converter...
basic=speed;di...
unit_converter...

basic=arc dista.

w0
]

basic=elevatio...
division(basic...

final public static float spherical distance(float phil, float 1: df"f’f""

float phi, float lar

)
S

w0 ©
. i

return sphericalDistance(phil, lambda0, phi, lambda): [Edivision [Z] muttiplication(... [multiplication...
b [ZljavalangMath... division(multi...
[Ejavalang.Math.... [5] basic=latitud
e = = basic=latitude;... [%2] basic=factorf..
* Calculate spherical arc distance between two points with doubl muhipli:ation basic=longitu. @ basic=factor f...
: PEeCInIan: ultiplication basic=sine”2... [22 basic=cosine;d,
* Computes arc distance ‘c' on the sphere. (0 ¢ m”nfplfm!n" I°"9fm,de-fie DX Aetatts
. & &
« v [multiplication plus(earth_mo... [35
2 [Eplus [Z earth_model=s... [32]
=— = = v £ ltiplication.. [+
@ Concept Explication 4@ Diagnose View 53 Hieras e a] my
[Z earth_model=s... [&]
Error AST Node Error Type Error Message Contet | [Zlassignable [abosolute_dire.. [
GreatCircle.spherical... Error the cmtypes of arguments are conflict with the type ... = basic=angledi
kilometers+=GreatCir... Warning Unclear type calculation: there is no type rule that pe... [%] basic=angledi gl
getLengthinKilometer... Warning Unclear type calculation: there is no type rule that pe... [Z basiczangledi.. [& ngle:di...
GreatCirclespherical... Error the cmtypes of arguments are conflict with the type ... 7 basic=co latitu... [%3 basic=angle;di...
thisLength >= kilome... Error Type Inconsistency; left hand is typed basic=angle;di... [% basic=elevati altitude_type=...
kilometers / thisLength Warning Unclear type calculation: there is no type rule that pe... = basi altitude_type=
= = .. [basiczlatitude..
< > —_ —_ 5
=) [m] X l
New Correspondence Type Wizard page 1
This wizard creates a new correspondence type. |
Project: [opentap Browse.. | i
Existing CM types [
@4 Types Type Detail: latitude geocentric
v (& CMTYPE List A | The concept explication for this CM type:
v (= latitude_deg [link to Concept |
[Z] latitude_geocentric_deg = =
[Z] latitude_geodetic_deg Attribute Type Enable A
v (& latitude_rad unit radians y
[5] latitude_geocentric [A earth_model _ellipsoidal v
5] Iatitude_geodetic latitude_type geocentric y
colatinide [oriestation . b horizontal
longitude._rad 2 i 5
: [A sern circle___eauator v
[longitude_deg O .
v & earth_radius.nm Approximation type Information:
v (= major_radius Approximate Property Value Description
equatorial_radius_int74
equatorial_radius_wgs84
v (& minor_radius i
polar_radius_wgsg4
=1 nolar radius int74 i
5 >
Apply Changes ‘ all | tainting Clear ‘ Dimension ‘ Dimension and unit ‘
| | select this att \
Cancel

Fig. 25. Wizard: CM type rules wizard

105

Chapter 7. Prototype Implementation

7.2.5 CONCEPT EXPLICATION VIEW

Concept Explication View presents explications for a real-world concept. When a

real-world type is selected, explications associated with the type are displayed here.

& Concept Explication ¥ & Diagnose View =~ =0
Definition:

The latitude of a location on the Earth is the angular distance of that location south or north of <
the Equator.

Attribue Definition
unit unit of latitude

Fig. 26. View: concept explication

71.2.6 DIAGNOSE VIEW

Diagnose view displays the error messages generated by analysis techniques. Fig.
27 shows a snapshot of the diagnose view. The rectangle in the bottom part marks the
diagnose view. The first column, Error AST Node, shows expressions that cause the
errors. The second column of Error type defines the type of diagnosis, whether it is a
warning or error. The third column describes the contents of the error in detail. And the
column of Permission allows users to suppress this error.

The diagnose view can be used to trace sources of errors. Two rectangle boxes in

the figure show the traces. When an error is pressed in the diagnose view, the statement

106

Chapter 7. Prototype Implementation

that causes the error is covered with shadow, as indicated by the top red box. All errors

found by the analysis are highlighted with color, as indicated by the middle rectangle

box.
4J) Roadjava 2 | [J] GreatCirclejava = 8
> f& PR B ﬁ Road » @ getlLocationAtKilometer(float) : LatLonPoint
116 */ Al
117% public float getLengthInKilometers() {
118 float kilometers = 0.0f;
119 LatLonPoint prevPoint = points[0].getLocation():
120 // logger.warning ("" + this + " pt 0 " + points[0] + " pt !
121 [/ + points[l] + " getSecondInter " + getSecondIntersection
122 £ ()):
123 for (int 1 = 1; i < points.length; i++) {
124 atlonPoin DisPoipt = poipntsfg ge
125 kilometers += GreatCircle.sphericalDistance (prevPoint.qg
126 prevPoint.getlongitude() ,
127 thisPoint.getLatitude(),
128 thisPoint.getLlongitude())H
129 prevPoint = thisPoint;
130 }
131 return kilometers;
132 }
133
1349 public float getTraverseHours() {
135 if (isBlocked())
136 return Float.MAX VALUE;
137 return IgetLengt.hInKi lometers () / getRoadClass() .getConvoySpeI
138 }
39
40% e
41 * @CM def cmt (thisLength)=anqular distance rad hd
< >
© Concept Explication |4 Diagnose View £3| 5o Call Hierarchy e ASTView el |
Error AST Node Error Type Error Message Context
GreatCircle.spherical... Error the cmtypes of arguments are conflict with the type ...
kilometers+=GreatCir... Warning Unclear type calculation: there is no type rule that pe...
getLengthinKilometer... Warning Unclear type calculation: there is no type rule that pe...
GreatCircle.spherical... Error the cmtypes of arguments are conflict with the type ...
thisLength >= kilome... Error Type Inconsistency; left hand is typed basic=angledi...
kilometers / thisLength Warning Unclear type calculation: there is no type rule that pe...
< >

Fig. 27. View: diagnose view

107

CHAPTER 8

8. EVALUATION OVERVIEW

The interpreted formalism and real-world type system concepts were evaluated by
conducting case studies on two open-source software projects [86]. This chapter first
introduces the setup of the evaluation; and then summarizes the purposes and processes
of the case studies. The details of the case studies are presented in Chapter 9, 10, 11,

and 12.

8.1 INTRODUCTION

Comprehensive sets of statistical experiments are the best way to evaluate a
complex concept like the interpreted formalism. However, it is not feasible to conduct
comprehensive sets of experiments and statistically analyze the results with the
resources available for this research. Instead, pilot case studies were conducted to get
initial observations about the utility and performance of the interpreted formalism
concept and real-world type systems. These initial observations can be used to motivate

and inform more extensive experiments.

109

Chapter 8. Evaluation Overview

The evaluation is organized as two major parts. The two parts serve different

purposes:

e Evaluating properties. The first part of the evaluation aims at assessing several
properties of the interpreted formalism. In this part, complete real-world type
systems were created for the two software projects Kelpie flight planner and
OpenMap. Various elements of the projects were bound with real-world types, a set
of type rules were defined, and analysis techniques were performed. The data
collected in this part were used to evaluate various properties of the interpreted

formalism. The case studies of the two projects are presented in Chapter 9 and 10.

e Demonstrating pragmatics. The main purpose of the second part was to demonstrate
the pragmatics of the interpreted formalism. Applying and using the interpreted
formalism might not be an easy task for new users. Chapter 11 and 12 demonstrate
the pragmatic mechanisms of interpreted formalisms with two case studies. Chapter
11 demonstrates the detailed process of applying the interpreted formalism on a
software project; and Chapter 12 illustrates the synthesis framework that was

implemented to facilitate developing interpreted formalisms.

The remainder of this section first describes the two software projects, and then
focuses on the setup of the first part of evaluation. The properties being evaluated are

introduced. In addition, the processes of evaluating the properties are presented.

110

Chapter 8. Evaluation Overview

8.2 THE CASE STUDY SUBJECTS

The interpreted formalism has been evaluated on two open-source software

projects. Both projects are from the geography domain. The two projects are:

e The Kelpie flight planner [43]. This is an open-source Java project based on
FlightGear [25]. The Planner project uses the airport and navaid databases of
FlightGear to determine routes between airports based on user inputs. Results are
presented using a sophisticated graphical interface. The moderate-sized project is
13,884 lines long in total.

e OpenMap [58]. OpenMap is a JavaBean-based toolkit for building applications and
applets needing geographic information. Using OpenMap components, users can
access data from legacy applications. The core components of OpenMap are a set of
Swing components that understand geographic coordinates. These components
allow users to show map data and manipulate that data. The large-sized project has

157,858 lines of code.

8.3 EVALUATED PROPERTIES

The main research question that needs to be answered in the first part of the

evaluation is:
Is interpreted formalism feasible and effective?

Specifically, four questions need to be answered:

111

Chapter 8. Evaluation Overview

e Is it feasible to apply the interpreted formalism in modern software projects of

different sizes?
e How effective are the analysis techniques in modern software projects?

e How much effort is required to apply the interpreted formalism on software projects

of different sizes?

e Is interpreted formalism scalable? Does the size of real-world type system increase

linearly when the size of software projects increases?

In order to answer these questions, the pilot case studies were conducted to assess
feasibility, effort level, error detection capability, and scalability. Two major case
studies were conducted on the two open-source software projects. Data items pertinent
to these properties were recorded. Analyzing these data helps assessing the
performance of the real-world type system, thereby making reasonable predictions
about the overall performance in more comprehensive experiments.

This section presents these properties, and then introduces the approaches by which

these properties were evaluated.

8.3.1 FEASIBILITY

The first purpose of case studies was to determine if applying the interpreted

formalism is feasible in modern software projects.

112

Chapter 8. Evaluation Overview

APPROACH

In order to assess feasibility, complete real-world type systems were created for the
Kelpie flight planner project and the OpenMap project. Real-world types were created
for all real-world entities accessed by the software applications, and variables and
methods that access real-world entities were bound to their real-world types. A set of
type rules were defined so that relevant relationships between real-world entities could
be established. After setting up the real-world type system, analyses were conducted
on the two software projects. Real-world constraint checking was used to detect
violations of real-world constraints. Reasonable range analysis was conducted on the

projects to detect error-prone computations.

ASSESSMENT

Feasibility was assessed by answering a list of questions:

e s it fit to apply the interpreted formalism to a moderate-sized software system?
o Can different real-world types and type rules be defined and used?
o Can different program elements be bound with real-world types?

o Can the interpreted formalism be applied to different source files in the

software?

Can the interpreted formalism be applied to all source files that access real-

O

world entities?

Can analysis techniques be applied to the software?

O

113

Chapter 8. Evaluation Overview

e s it fit to apply the interpreted formalism to a large-sized software system?
o Can the interpreted formalism be applied to all of the files in the system?
o Can all of relevant variables be interpreted?

o Can analysis techniques be used in the software system?

DATA COLLECTED

In order to answer these questions, the case studies collected the following items:
e Size of the software:
o Number of variables.
o Number of source code files.
o Number of packages.
e Size of real-world type systems:
o Number of real-world types defined.
o Number of real-world type rules defined.
o Number of real-world type bindings.
e Coverage of interpreted variables:
o Number of variables requiring interpretations.
e Numbers relevant to error checking:

o Number of source files that were checked.

114

Chapter 8. Evaluation Overview

o Number of source files with error reported.

These data were used to determine the feasibility of real-world type systems and

discover possible difficulties in the use of real-world type systems.

8.3.2 ERROR DETECTION CAPABILITY

This part of the evaluation was conducted to gain insights into the interpreted

formalism’s capability of detecting real errors, and how effective it is.

APPROACH

After setting up interpreted formalisms, analysis techniques were conducted on the
Kelpie flight planner and OpenMap projects. Real-world constraint checking and

reasonable range analysis were the primary analysis techniques.

ASSESSMENT

The error checking capability was assessed by answering a list of questions:
e Are the error checking techniques useful?
o Can they detect real errors?
o Can they detect more than one kind of error?
o Can they detect errors from different source files?
e Are the error checking techniques effective?

o How many errors were reported?

115

Chapter 8. Evaluation Overview

o How many real errors were reported?
o What was the ratio of real errors to error reported?
e Are the error checking techniques versatile?
o Can they detect real errors in a moderate-sized project?

o Can they detect real errors in a large-sized project?

DATA COLLECTED

A list of data were collected to assess the capability of error checking, including:
e Numbers of errors reported:
o Number of errors reported in total.
o Number of source files with error reported.
e Numbers of real errors:
o Number of real errors in total.
o Number of source files with real errors.
e Numbers of false warnings:
o Number of false warnings in total.
o Number of source files with false warnings.
o Number of source files with only false warnings.

These data was used to determine the error detection capability of real-world type

systems, and discover possible difficulties in the use of real-world type systems.

116

Chapter 8. Evaluation Overview

8.3.3 EFFORT LEVEL

In Chapter 6, a synthesis framework was introduced to alleviate the burden required
from engineers. This part of the evaluation was conducted to measure the effort

required from engineers when they receive help from the synthesis framework.

APPROACH

In the process of setting up the interpreted formalism for the Kelpie flight planner

and OpenMap, data relevant to the effort level required were collected.

ASSESSMENT

The effect level is assessed by answering a list of questions:
e Does developing real-world type system require excessive effort from the users?
o Can real-world type rules be reused?
o Can real-world type specifications be reused?
e Can synthesizers provide support for reducing users’ effort?
o Can synthesizers provide engineers with candidate real-world types?
o Can synthesizers provide engineers with candidate real-world type rules?

o Can synthesizers provide engineers with candidate real-world type

bindings?

117

Chapter 8. Evaluation Overview

e Are the synthesizers effective in reducing users’ effort?

o What’s the percentage of real-world type bindings can be provided by the

synthesizers?

o Can synthesizers create a useful set of real-world type bindings?

DATA COLLECTED

For a software system, a list of data were collected to assess the effort, including:
e Size of the real-world type system:
o Number of real-world types in total.
o Number of semantic attributes for real-world types in total.
o Number of real-world type rules in total.
o Number of real-world type bindings in total.
e Size of the real-world type system created by engineers:
o Number of real-world types created by engineers.
o Number of semantic attributes created by engineers for real-world types.
o Number of real-world type rules created by engineers.
o Number of real-world type bindings created by engineers.
o Size of the real-world type system provided by reusing artifacts:

o Number of real-world types provided by reusing existing real-world type

libraries.

118

Chapter 8. Evaluation Overview

o Number of real-world type rules provided by reusing existing real-world

type libraries.

8.34 SCALABILITY

This part of the evaluation was conducted to assess how real-world type systems

scale with larger software systems.

APPROACH

OpenMap is about 11 times the size of the Kelpie flight planner. In the process of
setting up the interpreted formalism for the Kelpie flight planner and OpenMap, the
data for the two projects were compared in different aspects. The results of the

comparison show the potential of using real-world type systems in larger systems.

ASSESSMENT

The scalability was assessed by answering three questions:
e Does the size of real-world type system scale linearly?
o Does effort level required from user scales linearly?

¢ Do error checking techniques perform similarly in software of different sizes?

DATA COLLECTED

For both software systems, a set of data were compared:

119

Chapter 8. Evaluation Overview

o Size of software:
o Number of files.
o Number of packages.
o Lines of code.
e Size of the real-world type system:
o Number of real-world types.
o Number of real-world type rules.
o Number of real-world type bindings.
e Effort required from engineers:
o Number of real-world types created by engineers.
o Number of real-world type rules created by engineers.
o Number of real-world type bindings created by engineers.
e Error checking capability:
o Number of errors reported.

o Number of real errors found.

120

CHAPTER 9

9. CASE STUDY: KELPIE FLIGHT PLANNER

This chapter presents the case study on the Kelpie flight planner. The case study
aims at evaluating the performance of interpreted formalism in moderate-sized
software by applying the real-world type system on the software. Results of the case
study show that the interpreted formalism is feasible in moderate-sized software, and
the error checking techniques are effective in detecting real errors.

The planner software is briefly introduced and then the purposes and process of the

case study are described. Finally, the results of the error checking are presented.

9.1 SYSTEM OF CASE STUDY

9.11 BASIC INFORMATION

The Kelpie flight planner is an open-source Java software system based on

FlightGear [25]. The software project is hosted at the website of sourceforge.net [43].

121

Chapter 9 Case Study: Kelpie Flight Planner

The software is highly reviewed by the users, and is being actively downloaded for

around 50 times per week. The figure below shows a screenshot of the software.

et P Phees i) — o
Gie Plan T Window Melp
R =N R S P

[“row fan | = B @ weesd Map View 13 | im0
s = ' 3 bl) T -’ S —_—
| (name Jim Jueng frea e | o }b-—;- ®
| Budsavci VOR DME $27SIN Nr29ASE 1152 1 (57!3 2 Jr (
Skape VORDME 4TSN ATIE 1128 15° ‘5’" ?r ‘,.n{ o
Thessaloni VOR DME HITIEN PWNE 1123 5" St
Mesta VOR-DME JBISVEN 2SUSCNE 1176 133 i \‘; \ ugf
karla NDB WArSEN 6°NTME 3220 148* J i TR Y R |
Kos VORDME GArHN 2PSTIEE 1090 145 ; ?:, g /
“Wayponts IVEIEN 287 1a00E 19)
“Wayponts 1SN 29718 HE 152" e, dgid
Il Waypinis NaEEN W2EE 152
| <Brgrming of descen> J0°15728N AC1°NE 152*
—_————— B
| ! 3 { o et gay) = =
X v 8 v e —— =
LTI I T,) — %
lkom 30rsaN @*13'®W CaioRgal [fEcA Culaled i <. o
|| 3 " | Neared Navad | VORCVO - Cffo WVORDME freg 1152 N
) 30°53° 16N BMYST1ITW Cain Grady Co u
|| HECW 307aIN 3'SSTEE Cairo Weest
. st lmai Range feo nm‘ @ L
st i b |

Fig. 28. Screenshot of Kelpie flight planner

9.1.2 IMPORTANT REAL-WORLD SEMANTICS

Some real-world semantic attributes are important in understanding this software.

These attributes are introduced first.

DIMENSIONAL AND UNITS ATTRIBUTES

The Kelpie flight planner software makes calculations involving distances,

velocities, speeds, accelerations, angles, time and so on, and it does so using a variety

122

Chapter 9 Case Study: Kelpie Flight Planner

of units. Clearly, the software is of the type for which dimensional and units analysis

has the potential to discover faults.

The dimensions and units are all real-world concepts that are defined in the real-

world type system by default, and the type rules follow immediately from elementary

physics.

VELOCITY SURFACE ATTRIBUTE

A critical element of the data used by the Kelpie flight planner in modeling aircraft
movement is a two-element vector consisting of the horizontal velocity (motion across
the Earth’s surface) and the vertical velocity (climb or sink rate) of the aircraft. The

vector as the velocity surface. The details of the velocity surface are shown in Fig. 29.

e ‘m g E Sink Velocity >

Sink Rate
(Feet/Minute)

—-—_ClmbRate _____
(Feet/Minute)

«4—-

%

W (Nautical Miles/Hour) >

Fig. 29. The velocity surface

123

Chapter 9 Case Study: Kelpie Flight Planner

EARTH MODEL ATTRIBUTE

The Earth is neither a sphere nor any other simple shape. In order to undertake
useful calculations, programs like the Kelpie flight planner have to operate with a
model of the Earth’s geometry.

Various models of the Earth’s geometry have been created, including a sphere and
an ellipsoid. For the ellipsoid, different models have been developed for special
purposes. For example, the International Geomagnetic Reference Field IGRF [35] and
the World Magnetic Model WMM models [79] are popular for calculations involving
the Earth’s magnetic field.

The model or models in use for a particular piece of software have to be used
carefully so that the “right” model is used in any given calculation. Misplacement of

variables and values in different models could introduce mistakes.

9.2 DATA COLLECTED AND ASSESSMENT

The data that need to be collected for the evaluation are outlined in Chapter 8. This

section presents and analyzes the data collected in this case study.

9.2.1 FEASIBILITY

DATA COLLECTED

The data collected in this case study were:

124

Chapter 9 Case Study: Kelpie Flight Planner

e Size of the software:

As introduced before, the Kelpie flight planner software is 13,884 lines long, is
organized as 10 packages, and is contained in 126 source files. The total number of

identifiers in the software is 28,754.

e Size of real-world type systems:

In this case study, the real-world type system for the project contains 35 real-world

types, 97 real-world type rules, and 255 real-world typing bindings.

e Coverage of interpreted variables:

Variables in 32 source files have been interpreted with real-world types. Real-world
types have been accessed by program elements inside 50 source files. The other
source files do not interact with real-world entities. They do not have real-world

type bindings.

e Numbers relevant to error checking:

With real-world type system deployed, the real-world constraint checking and
reasonable range analysis were conducted to detect errors. In the case study, all 126

source files were checked for errors. Errors have been reported in 4 files.

ASSESSMENT

e Can different real-world types and type rules be defined and used?

125

Chapter 9 Case Study: Kelpie Flight Planner

Yes. The real-world type system for the software contains 35 different real-world

types and 97 different real-world type rules.
e Can different program elements be bound with real-world types?

The real-world type system contains 255 real-world type bindings in total. The
bindings are associated with different kinds of program elements, including local

variables, global variables, function signatures, arrays, and class instances.
e Can the interpreted formalism be applied to different source files?

Interpreted formalism has been applied to all the files in the Kelpie flight planner.
The software has 126 source files, 32 files contain real-world type bindings, and 50
files access real-world types through bindings or calling external functions. The

other 76 files do not interact with real-world entities.

e Can the interpreted formalism be applied to all source files that access real-world

entities?

Among the 126 source files, 50 files access real-world entities through variables and

function calls. The interpreted formalism has been applied to these files.
e Can analysis techniques be applied to the software?

Real-world type checking and reasonableness range analysis have been used in error
checking. All 126 source files have been checked. Real errors were reported.

Detailed results of error checking are presented in the next section.

126

Chapter 9 Case Study: Kelpie Flight Planner

9.2.2 ERROR DETECTION CAPABILITY

The analyses performed on the Kelpie flight planner software showed promising
results. Both real-world constraint checking and reasonable range analysis found real
errors that have not been reported before. Real-world constraint checking found 6 real

errors, and range analysis found 12 statements with error-prone computations.

DATA COLLECTED

In total, real-world constraint checking reported 12 errors. For real-world constraint
checking, 6 of the 12 reported errors are real. Real errors were found in 4 source files.
Reasonable range analysis found 12 statements with error-prone computations. For
reasonable range analysis, all 12 statements could in fact produce outbound values of
the feasible ranges, so all of them are worth notice.

Six reported errors were considered as false warnings. They come from the same
source file. The reason is that one array is holding values of different real-world types.

In addition to errors, analysis revealed several locations in the software that were
not errors but which I classify as “improper usage”. The term of improper usage means
either (a) a variable took on different real-world entities (but the same programming
datatype) in different parts of the program, or (b) the elements of an array were not all
of the same real-world entities (but were of the same programming type). This usage

of variables is probably not a good practice.

127

Chapter 9 Case Study: Kelpie Flight Planner

ANALYSIS OF REAL ERRORS

A summary of errors found by real-world constraint checking is shown in the table

below.

Table. 4 . Real errors found by real-world constraint checking

Program File #Faults Semantic attribute involved
PlanHelper.java 2 velocity surface
PlanHelper.java 3 units
FGPlanWriter.java 1 units
Plan.java 1 Earth model
PlanEditor.java 1 Earth model

These errors come from six statements residing in 4 different source files. We list

these files and the details of the errors below.

e Plan.java:
heading -= Magfield.getMag(loc.getLat (), loc.getLong());

The first parameter of the function getmag () expects a geodetic latitude when the
shape of Earth is modeled as an ellipsoid. However, the argument loc.getLat() is a

latitude when the Earth’s shape is modeled as a sphere.

e PlanEditor.java:

bearing -= Magfield.getMag(locator.getNavaid() .getLat (),

locator.getNavaid() .getLong ()) ;

128

Chapter 9 Case Study: Kelpie Flight Planner

The error found in this statement is caused by the same reason as the error we stated
above. The argument and parameter of the function getmag () refer to different

shapes of the Earth.

e FGPlanWriter.java

The file contains a statement below:

double roughLonSep = range / (60 * Math.cos(point.getLatitude()));
The function point.getLatitude () returns a latitude value with unit of degree
when unit of radians is needed.

e PlanHelper.java

The file contains three erroneous statements. The first statement is:
alt -= legTime * plan.getAircraft () .getSinkSpeed()/60;

The expression references the wrong data. getsinkspeed() returns a quantity
measured horizontally and a1+t is measured vertically.

The second statement is:
alt += legTime * plan.getAircraft () .getClimbRate()/60;

plan.getAircraft () .getClimbRate () returns the climb rate in feet/minute,
the variable legTime is time in hours, and a1t is altitude in feet. The conversion
factor is 60, but the conversion requires multiplication by 60, not division.

The third statement is:

alt -= legTime * plan.getAircraft().getSinkSpeed()/60;

129

Chapter 9 Case Study: Kelpie Flight Planner

The expression references the wrong data. As in the first statement, getsinkspeed()
returns a quantity measured horizontally and alt is measured vertically. Correcting
this fault yields code with the same units issue as arose in the second fault requiring
an additional fix.

The reasonable range analysis detected 12 error-prone statements. The table below

summarizes the error-prone statements found in this case study.

Table. 5 . Possible errors found by reasonable range analysis

Program File # of Warnings Possible errors

FGplanwriter.java Division of zero
Mercator.java Infinite bounds
Taxiway.java Division of zero

AutoPlanner.java Division of zero

PlanHelper.java Out of reasonable range

R W R N e

Coodinate.java Division of zero

The table shows the possible errors that can be caused by the detected statements.

There are 2 common sources:

e Possible outbound of reasonable range. All values of real-world entities have their
reasonable ranges. If a statement involves values that go beyond real-world

reasonable ranges, a warning is issued.

¢ Infinity or Not A Number error (NAN). If a statement produces values with a bound

of infinity or NAN, a warning is issued. A frequent example is a division of zero.

The details of the errors are described below.

130

Chapter 9 Case Study: Kelpie Flight Planner

e PlanHelper.java
The source file contains three statements that could lead to values beyond their

reasonable ranges. The first statement is:
timeToBOD = altToBOD / plan.getAircraft().getSinkSpeed() / 60;

The right side invokes the wrong function getsinkspeed (). The correct function
should be getsinkrate (). The two function calls return values whose ranges are
more than ten times different. As a result, the range computed for the right side is
largely different from the reasonable range of timeToBOD.

The other two statements in this file have the similar situation. One of them also
refers the wrong function getsinkspeed (). And the other statement converts a
value of time measured in hours to time measured in minutes by division instead of

multiplication.
e Coordinate.java

A warning was issued by range analysis on the following statement:

double heading = Math.acos(
(Math.sin(lat2)-Math.sin(latl) *Math.cos (d))

/ (Math.sin(d) * Math.cos(latl))):;

This is caused by the range of argument for Mmath.acos (). The range computed for

the long expression is [-=, +=] due to the fact that the range of the divisoris [0, 17.

e FGplanwriter.java

The file contains a statement:

131

Chapter 9 Case Study: Kelpie Flight Planner

double roughLonSep = range / (60 * Math.cos (point.getLatitude()));

The point.getLatitude () returns latitude values in degree, ranging from -180 to
180 degrees. Therefore, the right side of the statement could lead to a division of
zero. Such kind of statements needs to be carefully handled with assertions or if

statements.
e Taxiway.java
Four statements were found:

ALong = longitude + (feetEastL - feetEastW) /
(FEET PER DEGREE * Math.cos (Math.toRadians (latitude))) ;
BLong = longitude + (feetEastL + feetEastW) /

(FEET PER DEGREE * Math.cos (Math.toRadians (latitude)));

CLong = longitude + (-feetEastlL + feetEastW) /

(FEET PER DEGREE * Math.cos (Math.toRadians (latitude)));

DLong = longitude + (-feetEastL - feetEastW) /

(FEET PER DEGREE * Math.cos (Math.toRadians (latitude)));

All these four statements could possibly lead to division of zero since the value of

latitude could be 90 degree.
e Autoplanner.java

One erroneous statement was found:

double roughLonSep = range /

(nm_deg * Math.cos (Math.toRadians (point.getLatitude())));

And one was found in coordinate.java:

132

Chapter 9 Case Study: Kelpie Flight Planner

heading = Math.acos((Math.sin(lat2) - Math.sin(latl) * Math.cos(d))

/ (Math.sin(d) * Math.cos(latl))):
e Mercator.java

In addition to division of zero, some statements lead to infinite bounds in other ways.

For example, this source file contains two statements:

return rad2Deg * Math.log(Math.tan(pi4 + deg2Rad * 0.5 * lat));

return -rad2Deg * Math.log(Math.tan(pi4 - deg2Rad * 0.5 * lat));

The arguments of Math.tan()would be 7/2 when value of 1at equals /2,

which results in an infinite upper bound.

ASSESSMENT

The error checking capability is evaluated by answering the questions posed in

section 8.3.2:
e Can the error checking techniques detect real errors?

In total, 6 real errors have been detected by real-world constraint checking, and 12

error-prone statements have been found by reasonable range analysis.
e Can the error checking techniques detect more than one kind of error?

Real-world constraint checking detected real errors that violate constraints on
different real-world semantics, e.g., Earth model and units. Reasonable range

analysis found statements that could lead to runtime errors.

e Can the error checking techniques detect errors from different source files?

133

Chapter 9 Case Study: Kelpie Flight Planner

Real-world constraint checking detected errors in 4 different source files, and

reasonable range analysis issued reports in 6 different source files.
e |Is the error checking effective?

The real-world constraint checking reported 12 faults, and 50% of them are real
errors. Reasonable range analysis reported 12 statements, and all of them possibly
lead to runtime errors. In total, the ratio of the number of real errors to the number
of reported errors is 18/24 = 75%. Such ratio suggests that the error checking
techniques are very effective. The reported errors and warnings deserve engineers’

attention.

9.2.3 EFFORT LEVEL

The effort required from users include effort for creating real-world types, real-
world constraints, and real-world type bindings. The effort required from users is
largely reduced by employing the synthesis framework and reusing existing artifacts.
The evaluation of effort level is part of the case study of synthesis framework. The

details are presented in Chapter 12.

134

CHAPTER 10

10. CASE STUDY: OPENMAP

This chapter presents the case study of OpenMap [58]. OpenMap is about 11 times
the size of Kelpie flight planner. This case study evaluates the performance of the
interpreted formalism concept in large-sized software. In addition to feasibility, error
detection, and effort level, this case study assesses scalability. The results of this case
study suggest that (1) the interpreted formalism is easily applied to a large-sized
software system, (2) error checking techniques are still effective, and (3) users’ effort

is greatly reduced by reusing existing artifacts.

10.1 SysTEM OF CASE STUDY

10.1.1 BAsIC INFORMATION

OpenMap is a JavaBean-based toolkit for building applications and applets needing

geographic information. OpenMap allows users to show map data and manipulate

135

Chapter 10 Case Study: OpenMap

geographic data. The OpenMap software has been studied and used by many

developers [59, 60, 61, 62]. The figure below is a screenshot of the user interface.

Lat, Lon (19.471, 158.312) - X,y (637,241)

Fig. 30 . Snapshot of OpenMap software

10.1.2 IMPORTANT REAL-WORLD SEMANTICS

Some real-world semantic attributes are important in understanding OpenMap.

These attributes are introduced here.

136

Chapter 10 Case Study: OpenMap

DIMENSIONAL AND UNITS

Similar to the Kelpie flight planner, the OpenMap software makes calculations
involving distances, heights, speeds, angles, time and so on, and it does so using a
variety of units. Clearly, the software is of the type for which real-world constraint
checking has the potential to discover units related errors.

The dimensions and units are all real-world concepts that are defined in the real-

world type system by default.

GEOGRAPHIC AND GEOCENTRIC LATITUDE

The real-world entity latitude has been widely used in the OpenMap software. The
software uses two types of latitude: geographic (geodetic) latitude and geocentric
latitude. The two types of latitude are different, and the difference is shown in Fig. 31.

Such difference is crucial when the shape of Earth is modeled as an ellipsoid.

Nermal

Fig. 31 . Two different types of latitude

137

Chapter 10 Case Study: OpenMap

REFERENCE LEVEL OF ELEVATION AND ALTITUDE

In OpenMap, the computation of the distance between two objects on Earth’s
surface frequently involves objects’ elevations. The elevations have different reference
levels. Two important reference levels are local ground and mean sea level. The
difference between the two reference levels should be carefully handled when the

computation expects high accuracy.

10.2 DATA COLLECTED AND ASSESSMENT

10.2.1 FEASIBILITY

Section 8.3.1 describes the metrics to evaluate feasibility. The data collected in this

case study are presented and analyzed below.

DATA COLLECTED

The data collected in this case study were:

e Size of the software

The OpenMap software used in this case study comes from the GitHub repository
of OpenMap of the latest version 5. The software has 157,858 lines of code. It

contains 1193 files, and the files are organized in 92 packages.

138

Chapter 10 Case Study: OpenMap

e Size of the real-world type system

The real-world type system created for Kelpie flight planner was reused in this case
study. The 35 real-world types and 97 real-world type rules were reused. Real-world
type bindings cannot be reused. In order to fully interpret OpenMap, 1932 real-

world type bindings were created.
e Coverage of real-world type bindings

Variables in 196 source files have been bound with real-world types. Real-world
types have been accessed by program elements inside 232 source files. The other
source files are not interacting with real-world entities. They do not have real-world

type bindings.
e Numbers relevant to error checking

With real-world type system deployed, real-world constraint checking and
reasonable range analysis were conducted to detect errors. All 1193 source files

were checked for errors. Real errors were found in different files.

ASSESSMENT

Section 8.3.1 poses several questions for evaluating feasibility. These questions are

answered here based on the data collected.
e Can different real-world types and type rules be defined and used?

This case study for OpenMap reused the real-world type system for the Kelpie flight

planner. The real-world type system for the Kelpie flight planner contains 35

139

Chapter 10 Case Study: OpenMap

different real-world types and 97 different real-world type rules. In addition to these
existing artifacts, one real-world type was newly created. Thus, the real-world type
system for OpenMap has 36 real-world types, 97 real-world type rules, and 1932

real-world type bindings.

e Can different program elements be bound with real-world types?

The real-world type system contains 1932 real-world type bindings in total. The
bindings were associated with different kinds of program elements, including local

variables, global variables, function signatures, arrays, and class instances.

e Can the interpreted formalism be applied to different source files in the software?

The interpreted formalism and real-world type system were applied to OpenMap.
The software has 1193 source files, 193 files contain real-world type bindings, and

all other files access real-world types through bindings or calling external functions.

e Can analysis techniques be applied to the software?

Real-world constraint checking and reasonable range analysis were both used for
error detection. All 1193 source files have been checked. Detailed results of error

checking are presented in the next section.

o |Is it feasible to apply the interpreted formalism to a large-sized software system?

The interpreted formalism was successfully applied to OpenMap. Real-world types
were bound with various program elements, and analysis techniques successfully

detected real errors.

140

Chapter 10

10.2.2 ERROR DETECTION CAPABILITY

The analyses performed on OpenMap showed useful results. Both real-world
constraint checking and reasonable range analysis were used for error detection. Real-
world constraint checking found real errors that have not been reported before. These
errors were reported to the author(s) of OpenMap through the GitHub website and the

author(s) confirmed them. Reasonable range analysis found statements that could lead

to runtime errors.

DATA COLLECTED

Case Study: OpenMap

The data collected in this case study on error checking are shown below:

e Number of errors reported

Table. 6 summarizes the results of error reported.

Table. 6. Errors reported by analyses in OpenMap

Analysis technique

of errors reported

of files involved

Units checking 49 15
Real-world constraint checking | 52 18
Reasonable range analysis 29 18

Overall, real-world constraint checking reported 52 errors from 18 source files.

Reasonable range analysis reported 29 warnings from 18 source files.

e Number of real errors

Among the errors reported, some errors are genuine, and some others are false

warnings. Table. 7 presents the relevant data:

141

Chapter 10 Case Study: OpenMap

Table. 7. Real errors found in OpenMap

Analysis technique # of errors # of files with # of real # of files with
reported reported errors | errors/warnings real errors

Units checking 49 15 8 4

Real-world 52 18 23 10

constraint checking

Reasonable range | 29 18 12 6

analysis

As stated before, units checking is a special form of real-world constraint checking.
Overall, units checking found 8 real errors. Real-world constraint checking found
24 real errors in total from 11 files. Table. 8 summarizes the real errors found and

source files that contain these errors:

Table. 8. Real errors found by real-world constraint checking

Program File # of faults Semantic attributes involved
RoadFinder.java 1 Latitude and longitude
Route.java 4 Units
Road.java 4 Units
Gonomic.java 1 Latitude and longitude
OMDistance.java 2 Units
TX7.java 1 Earth radius
LOSGenerator.java in 3 Reference level of elevation
(com/bbn/openmap/tools/terrain/)

LOSGenerator.java in 3 Reference level of elevation
(com/bbn/openmap/layer/terrain/)

GeoTestLayer.java 1 Geodetic and geocentric latitudes
GeoCrossDemoLayer.java 3 Geodetic and geocentric latitudes
QuadTreeNode.java 1 Units

142

Chapter 10 Case Study: OpenMap

e Number of false warnings

In this case study, analysis techniques reported more errors than the number of real
errors. Real-world constraint checking reported 52 errors, while 23 of them are real
errors. The other reported errors are not real errors, but they could be useful. These
unreal errors are categorized into two kinds: improper usage and false warning.

The table below summarizes the improper usage and false warnings found by all

analysis techniques.

Table. 9. False warnings and improper usage

Analysis techniques # of improper usage # of false warning
Units checking 24 17
Real-world constraint checking 25 4
Reasonable range analysis 4 12

The definition of improper usage was introduced in section 9.2.4. The improper
usage refers to either (a) a variable took on different real-world entities (but the same
programming datatype) in different parts of the program, or (b) the elements of an
array were not all of the same real-world entities (but were of the same programming
type).

Most improper usages come from statements that are similar to the statements

below:

lat = Math.toRadians (lat);

lon = Math.toRadians (lon);

143

Chapter 10 Case Study: OpenMap

Variables 1at and 10n on the left side represent values of latitude and longitude
values in units of radians, but the two variables represent values in units of degree
on the right side. The variables take different real-world entities in the same
statements. The statements are flagged as improper usage.

Other non-real errors that were reported are false warnings. These false warnings
frequently involve conversion between different real-world types. For example,

false warnings were reported in statements below:

double lambda = lon * Degree;

double phi = Math.abs(lat * Degree);

In the first statement, variable 1on which represents longitude of radians is
converted to variable 1ambda Which represents longitude measured in degrees. The
second statement is similar.

The statements reported as improper usages and false warnings indicate some error-
prone operations. Programmers should double check these statements to make

certain that the entities referenced are being used correctly.

ANALYSIS OF REAL ERRORS

The details of these real errors are presented in this section. The source files where

the errors were found are listed, and then the details of the errors are presented.

e RoadFinder.java

An incorrect statement was found. It adds values of 1atitude to values of

longitude.

144

Chapter 10 Case Study: OpenMap

distance = (Math.abs (foundLoc.getLatitude()-loc.getLatitude())

+ Math.abs (foundLoc.getLongitude () -loc.getLongitude()));

e Route.java

Four errors have been reported in source file route. java. All of them are related to

misuses of units. Two of them exist in the statement below:

float timelLimitBase = GreatCircle.sphericalDistance (tolat,
toLon, fromLat, fromLon)

/ worstConvoySpeed;

For the first error, the function GreatCircle.sphericalDistance () E€XPects
parameters in units of radians, while the arguments toLat, toLon, fromLat, and
fromLon all are in units of degree. Another error in this statement is caused by the
division. This function sphericalDistance () returns a value in units of radians,
and worseConvoySpeed IS in units of xilometer per hour. Such division is an
inconsistent use of units.

Two other units related errors were found in this file. They are:

crowsPathDistance = GreatCircle.sphericalDistance (tolLat,
toLon,
nextLoc.getLatitude (),

nextLoc.getLongitude());
and

float crowsPathHours = crowsPathDistance

/ bestConvoySpeed;

145

Chapter 10 Case Study: OpenMap

These two errors were caught for the same reasons of the two errors mentioned
above. For the first error, the function GreatCircle.sphericalDistance ()
expects arguments in units of radians, but the arguments are all in units of degrees.
For the second error, crowsPathDistance IS a variable in units of radians, and

bestConvoySpeed IS IN UNItS Of kilometer per hour
e Road.java

Four real errors were found in this source file. They are all misuse of units. The

statement below contains two real errors:

kilometers += GreatCircle.sphericalDistance (
prevPoint.getLatitude (),
prevPoint.getLongitude (),
thisPoint.getLatitude(),

thisPoint.getLongitude());

The reasons of the errors are the same as those stated above for route.java. For
the first error, the function Greatcircle.sphericalDistance () €expects the unit
of measurement to be radians for the parameters, but the arguments in this
statement are all of units degree. For the second real error, the return value of the
function is of units radians, which is not commensurable with variable kilometers.
The other two real errors were found in the two statements below:

The problems seen in the function GreatCircle.sphericalDistance () OCCUr
again. Arguments of the function should use the unit of measurement radians, but
variables in units of degrees are provided; variable tnhisLength IS not

commensurable with variable xilometers.

146

Chapter 10

thisLength = GreatCircle.sphericalDistance (
prevlat,
prevlon,
thisLat,
thisLon) ;

if (thisLength >= kilometers) {

Gonomic.java

One real error was found in the statement below:

double lambdaMinusCtrLon = lambda - centerY;

Case Study

: OpenMap

Variable 1ambda represents values of 1ongitude, and variable centery represents

values of 1atitude. The right side of the statement expects a difference between

two longitude values. The correct variable here should be centerx, instead of

centery.

OMDistance.java

Two real errors were found in this source file. The first one is an error related to

units, in the statement:

float lonDist = ProjMath.lonDistance((float) g2.getLongitude(),

(float) gl.getlongitude()):;

The function 1onbistance () defines its parameters in units of radians, but the

arguments, two calls of getLongitude (), are all in units of degree.

Another real error was found in this statement:

147

Chapter 10 Case Study: OpenMap

new OMText ((float) mid.getLatitude (), (float) mid.getLongitude(),

text, OMText.JUSTIFY LEFT);

The constructor omText () defines its parameters with a hypothesis that Earth is
modeled as a sphere. And the first argument of the constructor expects a value of
geocentric latitude. However, in this statement, the value returned by function
mid.getLatitude () IS avalue of geodetic latitude and the function models Earth

as an ellipsoid.
e TX7.java

One statement in this source file contains an inaccurate computation. The statement
is:
distance = GreatCircle.sphericalDistance(1ltl, 1nl, 1t2, 1n2)

* Planet.wgs84 earthEquatorialRadiusMeters;

This statement computes the distance between two points on the Earth’s surface.
According to basic geometry, angular distance (or angle) multiplied by radius yields
distance on a great circle of a sphere. In this statement, function
GreatCircle.sphericalDistance () computes the angular distance between the
two points on Earth surface, with the assumption that Earth is a sphere. However,
variable wgs84 earthEquatorialRadiusMeters represents Earth’s equatorial
radius with Earth modeled as an ellipsoid. The computation of distance in this

statement is not accurate.

148

Chapter 10 Case Study: OpenMap

e com.bbn.openMap.tools.terrain.LOSGenerator.java

Three statements in this source file contain inaccurate computations. The three

statements are below:

double P = Math.sin(arc _dist) *

(endTotalHeight + Planet.wgs84 earthEquatorialRadiusMeters);
double xPrime = Math.cos(arc dist) *

(endTotalHeight + Planet.wgs84 earthEquatorialRadiusMeters);
double cutoff =

startTotalHeight + Planet.wgs84 earthEquatorialRadiusMeters;

All three statements intend to compute the distance between an object and Earth’s
center by adding Earth’s radius and the object’s height above Earth’s surface
ground. Earth’s radius is the distance between Earth’s center and Earth’s surface.
However, in the three statements above, the variable
wgs84 earthEquatorialRadiusMeters represents Earth’s equatorial radius;
variables endTotalHeight and startTotalHeight represent values of objects’

heights measured above mean sea 1evel. The reference levels are different.
e com.bbn.openMap.layer.terrain.LOSGenerator.java

This source file has the same filename as the previous one. They both serve the same
purpose. The errors found in this file are similar to the ones stated above. The

statements are:

double P = Math.sin(arc dist) *

(xyheight + Planet.wgs84 earthEquatorialRadiusMeters);

149

Chapter 10 Case Study: OpenMap

double xPrime = Math.cos(arc_dist) *
(xyheight + Planet.wgs84 earthEquatorialRadiusMeters):;
double cutoff =

LOScenterHeight + planet.wgs84 earthEquatorialRadiusMeters;

The reasons for the errors are the same as the ones described for the previous one.

e GeoTestLayer.java

One real error is found in the statement:

OMPoint center = new OMPoint (

centerGeo.getLatitude (), centerGeo.getLongitude());

The constructor ompoint () expects values of geocentric latitude for the first
argument, but centerGeo.getLatitude () returns values of geodetic latitude. The
two latitude values are different. Also, the class ompoint uses latitude values with
the assumption that Earth is a sphere, but centerceo uses latitude values with Earth

modeled as ellipsoid.
e GeolntersectionLayer.java

This source file contains a real error in the statement below:

OMPoint pgeo = new OMPoint (

(float) geo.getlLatitude (), (float) geo.getLongitude());

Function geo.getLatitude () returns values of geodetic latitude, while values of

geocentric latitude are expected.

150

Chapter 10 Case Study: OpenMap

e GeoCrossDemoLayer.java

Three real errors were found in this source file. They are similar to the errors
described above. The three statements are:

OMLine line2 = new OMLine (

(float) ogc.getLatitude(), (float) ogc.getLongitude (),
(float) gc.getLatitude (), (float) gc.getLongitude(),
OMGraphic. LINETYPE_GREATCIRCLE) ;
new OMPoint ((float) gc.getLatitude (),
(float) gc.getLongitude(), 3);
p = new OMPoint ((float) i.getlLatitude(),

(float) i.getLongitude(), 3);

Values of geodetic latitude are used when values of geographic latitude are needed.
e QuadTreeNode.java

One units related error was found in this source file. The error is located in the

statements:

double distanceSqgr = dx * dx + dy * dy;
if (distanceSqgr < bestDistance.value) {

bestDistance.value = distanceSqr;

closest = gtl.object;

151

Chapter 10 Case Study: OpenMap

The variable distancesqr and variable bestDistance.value are different in units,
so they are not commensurable.
The errors reported above were detected by real-world constraint checking. In addition,
reasonable range analysis was used to detection possible erroneous computations. The

reasonable range analysis found 12 statements in 6 files. Table. 10 summarizes them:

Table. 10. Statements found by reasonable range analysis

Program File # of faults Possible errors
CADRG.java 1 Division of zero
Road.java 2 Out of reasonable range
Route.java 2 Out of reasonable range
OMDistance.java 1 Out of reasonable range
OMRasterObiject.java 2 Division of zero
MercatorUVGCT .java 4 Infinite bound

e CADRG.java

A warning was issued in the code segment below:

if (lonl > lon2) {
dlon = (180 - lonl) + (180 + 1lon2);
} else {
dlon = lon2 - lonl;
}
deltaDegrees = dlon;
deltaPix = getWidth();
}

ret = pixPerDegree / (deltaPix / deltaDegrees) ;

152

Chapter 10 Case Study: OpenMap

The variable de1tapegrees represents the difference between two longitude values.
Such difference could be zero, which would lead to a division of zero in the last

statement.
e Road.java

Range analysis reported two warnings in this source file. The two warnings come
from statements below:
GreatCircle.sphericalDistance (prevPoint.getLatitude (),

prevPoint.getLongitude (),

thisPoint.getLatitude(),

thisPoint.getLongitude());
GreatCircle.sphericalDistance (prevlat,

prevLon,

thislLat,

thisLon) ;
The arguments of GreatCircle.sphericalDistance () €Xpect units of radians,
while the statements provide values in degree. These two errors were reported by
real-world constraint checking as introduced above. Reasonable range analysis
reported these two errors for different reasons. The ranges / bounds for the
arguments in these two statements are different from the reasonable ranges expected

by the function. For example, variable thistat has reasonable range of [-90,90],

and the expected range is [-1t/2, ©/2].

153

Chapter 10 Case Study: OpenMap

e Route.java

Reasonable range analysis found two errors in this source file. The two errors are

almost the same as the two found in Road.java. The two errors reside in statements:

float crowsPathDistance = GreatCircle.sphericalDistance (tolat,
toLon,
nextLoc.getLatitude(),
nextLoc.getLongitude());
float timelLimitBase = GreatCircle.sphericalDistance (tolat,
tolLon,
fromLat,

fromLon)

These two statements were detected because the ranges for arguments are

inconsistent with the ranges expected from the arguments.
e OMDistance.java

One warning was issued in the statement below:

float lonDist = ProjMath.lonDistance((float) g2.getLongitude(),

(float) gl.getLongitude());

This error was also reported by real-world constraint checking. The arguments of

function 1onpistance () refer to wrong values in units of degree.
e RpfFrameCacheHandler.java

One warning was issued on the last statement of the segment below:

154

Chapter 10 Case Study: OpenMap

int numHFrames = (int) Math.ceil((lrlon - ullon) /
frameLonInterval) ;
int numVFrames = (int) Math.ceil ((ullat - 1lrlat) /

frameLatInterval) ;

return count / (float) (numHFrames * numVFrames) ;

Variables numiFrames and numvrrames represent the difference between latitude
values and longitude values. The differences could be zero. Therefore, the last

statement might lead to a division of zero.
e MercatorUVGCT .java

Four warnings were reported in this source file. These warnings were generated by

the four statements below:

Math.tan (lat * Math.PI / 180.0
1.0 / Math.cos(lat * Math.PI / 180.0)
Math.tan (lat * Math.PI / 180.0)

(1.0 / Math.cos(lat * Math.PI / 180.0))

These computations lead to values of infinity when variable 1at is ©/2 or —m/2.

ASSESSMENT

The error checking capability is evaluated by answering the questions raised in

section 8.3.2;

155

Chapter 10 Case Study: OpenMap

e Can the error checking techniques detect real errors?

Units checking found 8 real errors. Real-world constraint checking was able to find
23 real errors. In total, 24 real errors were found.

In addition, reasonable range analysis found 12 error-prone statements.
e Can the error checking techniques detect different kinds of real errors?

The real errors found by real-world constraint checking involve different real-world
semantic attributes, e.g., units of measurement, Earth model, and reference level.
Reasonable range analysis found statements that are prone to errors. These
statements could lead to different kinds of errors: possible division of zero, infinite

values, or outbound of reasonable ranges.
e Can it detect errors from different source files?

Yes. Units checking reported errors from 15 different source files. Real units errors
were detected in 4 files. Real-world constraint checking reported errors from 18
source files. Real errors were found in 11 different files. Reasonable range analysis

reported warnings in 6 source files.
¢ s the error checking effective?

Units checking reported 49 errors, and 8 of them are real errors, the ratio of real
errors is 16%. Units checking is a lightweight version of real-world constraint
checking, it gave a very promising starting point regarding error detection.

Real-world constraint checking reported 52 errors, and 23 of them are real errors,

the ratio of real errors is 44%. The ratio is arguably good.

156

Chapter 10 Case Study: OpenMap

Reasonable range analysis reported 29 errors, and 12 of them are real errors, the
ratio of real errors is 41%.

Overall, the ratio of the number of real errors to the number of reported errors is
more than 40%. Such ratio suggests that the error checking is very effective. About

half of the reported errors are real errors.

10.2.3 EFFORT LEVEL

OpenMap software is 11 times the size of Kelpie flight planner. If real-world type
system scales well, the effort required for OpenMap should be about 11 times the effort
required for Kelpie flight planner. This section introduces and analyzes the data
collected relevant to effort level required from users.

The results of this case study suggest that (1) the real-world type system is readily
reusable, (2) the synthesis framework effectively reduces the effort required from users,
and (3) the real-world type system works well for larger sized software system.

This part presents and analyzes the data collected relevant to user effort in this case

study for OpenMap software.

DATA COLLECTED

The data collected in this case study relevant to effort level are list below:

e Size of the real-world type system in total.

As stated before, real-world type system for the Kelpie flight planner was reused in

this OpenMap software. The real-world type system for Kelpie flight planner

157

Chapter 10 Case Study: OpenMap

contains 35 real-world types and 97 real-world type rules. Only one real-world type
was newly created for OpenMap. Therefore, real-world type system for OpenMap
software contains 36 real-world types in total and 97 real-world type rules.

Since most real-world types and type rules were reused from existing artifacts, the
major effort required in this case study is creating real-world type bindings. After
fully interpreting the OpenMap software, 1932 real-world type bindings were
created. A large part of the bindings were created by the synthesis mechanisms

provided.

e Size of the real-world type system created by users.

Reusing existing real-world type system saves users from creating all the real-world
types and type rules. Most effort required from users are on creating real-world type
bindings. Among the 1932 real-world type bindings created for OpenMap, a part of
them were created by user, and another part of them were synthesized.
In this case study, the process of adding type bindings was carefully organized. It was
composed of a sequence of two binding operations: binding seeding and binding
propagation.

Binding seeding was done by the user. Users read source files and seeded type
bindings to program elements manually. At the beginning of this case study, bindings
were seeded to a few JavaBean files that directly interact with real-world entities. For
example, LatLonPoint.java Was the first source file into which type bindings were
seeded. The file contains global variables representing latitude, longitude, and altitude.

The file also has a collection of utility functions, e.g., a function that calculates distance

158

Chapter 10

Case Study: OpenMap

between two coordinates; a function that computes the heading between two

coordinates. During later parts of the case studies, bindings were seeded to different

source files that access real-world entities.

Binding propagation was done by the type binding synthesizer. After type bindings

were seeded to source files, the binding synthesizer propagated these bindings to other

source files in OpenMap. From user’s perspective, binding propagation can be done on

one or several files in one operation. For example, binding propagation was frequently

applied to a package of source files. Type bindings in all files inside the package were

propagated sequentially.

Table. 11 summarizes the sequence of binding operations in this case study.

Table. 11. Sequence of binding operations for OpenMap

Binding operation details

of bindings

before operation

of bindings

after operation

Seeded 80 bindings in LatLonPoint.java 0 80
Propagated bindings in LatLonPoint.java 80 203
Propagated bindings in package: 203 297
com.bbn.openmap.proj

Seeded 119 bindings in GreatCircle.java 297 416
Propagated bindings in GreatCircle.java 416 507
Seeded 138 bindings in package: 507 645
com.bbn.openmap.proj

Propagated bindings in package: 645 681
com.bbn.openmap.proj

Seeded 61 bindings in Geo.java 681 742
Propagated bindings in Geo.java 741 835
Propagated bindings in package 835 896

159

Chapter 10

Case Study: OpenMap

com.bbn.openmap.geo

Seeded 90 bindings in package: 896 986
com.bbn.openmap.dataAccess.dted

Propagated bindings in package: 986 1024
com.bbn.openmap.dataAccess.dted

Seeded 13 bindings in package: 1024 1037
com.bbn.openmap.tools.road

Seeded 11 bindings in package: 1037 1048
com.bbn.openmap.dataAccess.shape

Seeded 19 bindings in package: 1048 1067
com.bbn.openmap.event

Seeded 6 bindings in package: 1067 1073
com.bbn.openmap.graphicLoader

Seeded 10 bindings in package: 1073 1083
com.bbn.openmap.gui

Seeded 28 bindings in package: 1083 1111
com.bbn.openmap.layer.beanbox

Seeded 16 bindings in package: 1111 1127
com.bbn.openmap.layer.dted

Seeded 30 bindings in package: 1127 1157
com.bbn.openmap.layer.link

Propagated bindings in package: 1157 1189
com.bbn.openmap.layer.link

Seeded 83 bindings in package: 1189 1272
com.bbn.openmap.layer.link

Seeded 64 bindings in package: 1272 1336
com.bbn.openmap.layer.location

Seeded 17 bindings in package: 1336 1353
com.bbn.openmap.layer.policy

Seeded 94 bindings in package: 1353 1447
com.bbn.openmap.layer.rpf

Seeded 16 bindings in package: 1447 1463

160

Chapter 10 Case Study: OpenMap

com.bbn.openmap.layer.shape

Seeded 5 bindings in package: 1463 1468
com.bbn.openmap.layer.terrain
Seeded 37 bindings in package: 1468 1505

com.bbn.openmap.layer.vpf
com.bbn.openmap.layer.test
Seeded 52 bindings in package: 1505 1557
com.bbn.openmap.omGraphics

Propagated bindings in package: 1557 1596
com.bbn.openmap.omGraphics

Seeded 20 bindings in package: 1596 1616
com.bbn.openmap.omGraphics.geom

Seeded 120 bindings in all other packages 1616 1736
Propagated bindings in all files 1736 1932

In summary, the total number of real-world type bindings for OpenMap is 1932.
1129 type bindings were seeded in different source files, and 803 type bindings were
synthesized. The binding synthesizer demonstrated better efficacy at early stages of
developing type bindings. For the first 507 type bindings, 199 bindings were seeded
and 298 bindings were synthesized. For the first 1024 type bindings, 488 type bindings

were seeded and 536 bindings were synthesized.

ASSESSMENT
The effort level required from users is evaluated by answering the questions raised

in section 8.3.3:

e Does the use of a real-world type system require excessive effort from the users?
The data collected in this case study suggest that necessary effort are needed, but

for a project with 1193 files, and 150,000 lines of code, the effort is not excessive.

161

Chapter 10 Case Study: OpenMap

Reusing existing artifacts made the effort even less. The major effort required was
developing real-world type bindings. And the binding synthesizer reduced such
effort by about 50%. Without any prior knowledge about the OpenMap software,
approximately 35 man-hours were expended to develop the real-world type system

for it. Analysis techniques then were able to reveal candidate errors in a few minutes.

e Can synthesizers provide support for reducing user’s effort?

The effort was largely reduced by two facilities: (1) reusing existing artifacts from
the case study of Kelpie flight planner, and (2) using synthesizer of real-world type
bindings.

Most real-world types and type rules came from reuse. The number of real-world
types needed in this case study was 36, and 35 of them were created in the case study
of Kelpie flight planner. All real-world type rules used in this case study were
created in the case study for Kelpie flight planner.

The effort for developing real-world type bindings was reduced by synthesizers. The
total number of real-world type bindings for OpenMap is 1932, 803 of them was

synthesized; the ratio is 41.6%.

o Are the synthesizers effective in reducing users’ effort?

As described above, 35 of 36 real-world types came from reuse; the percentage is
97%; all real-world type rules came from reuse. Reusing existing artifacts alleviated
user from creating real-world types and type rules.

The binding synthesizer successfully reduced the effort required to develop real-

world type bindings. The synthesis is very effective when the bindings are sparse in

162

Chapter 10 Case Study: OpenMap

the software. For the first 507 type bindings, 298 bindings were synthesized, the
ratio is 59%; for the first 1024 type bindings, 536 type bindings was synthesized,
the ratio is 52.3%. When 1024 type bindings were developed, source files that
frequently access real-world entities were associated with real-world types. After
that, source files that rarely access real-world entities were inspected one-by-one,
and type bindings were seeded accordingly. In total, the number of type bindings
was 1932, and 803 type bindings were synthesized. The ratio is 41.6%. The

synthesis mechanisms are very effective in reducing effort.

10.2.4 SCALABILITY

In order to get insights about the scalability of interpreted formalism, a comparison
was performed between results of case studies on Kelpie flight planner and OpenMap.
The comparison was on (1) sizes of the software, (2) sizes of real-world type systems,
(3) results of error detection, and (4) effort made by the user. The results of the
comparison suggest that interpreted formalism scales well as the sizes of software

systems increase.

DATA COLLECTED

The data collected in both case studies are presented and compared in the tables

below:

163

Chapter 10 Case Study: OpenMap

e Size of software projects

Table. 12. Software size comparison

Data collected Kelpie flight planner OpenMap Scale
Number files 126 1193 9.5
Number of packages 10 92 9.2
Lines of code 13,884 157,858 114

e Size of real-world type system

Table. 13. Real-world type system comparison

Data collected Kelpie flight planner OpenMap Scale
Number of real-world types 35 36 1.03
Numer of real-world type rules 97 97 1
Number of type bindings 255 1932 7.6

e Effort required from engineers

Table. 14. Effort level comparison

Data collected Kelpie flight planner OpenMap | Scale
Number of real-world types created | 35 1 0.03
by user
Number of real-world type rules | 97 0 0

created by user

Number of real-world type bindings | 122 1129 9.25

created by user

164

Chapter 10 Case Study: OpenMap

e Results of error detection

Table. 15. Results of error detection comparison

Data collected Kelpie flight planner OpenMap Scale

Number of errors reported by real- | 12 52 4.3

world constraint checking

Number of real errors detected by | 6 23 3.8
real-world constraint checking

Number of errors reported by | 12 29 2.4
Reasonable range analysis

Number of real errors reported by | 12 12 1

Reasonable range analysis

ASSESSMENT

The scalability is assessed by answering several questions:
e Does the size of real-world type system scale linearly?

In fact, the size of real-world type system scales super-linearly. The size of
OpenMap is 11.4 times the size of Kelpie flight planner. If the size of real-world
type system scales linearly with the size of software, the size of the real-world type
system for OpenMap would be about 11 times the size of the real-world type system
for Kelpie flight planner.

However, the comparison in Table. 13 suggests that the size of real-world type
system increases super-linearly to the size of software. The numbers of real-world

types and type rules for OpenMap are almost equal to the numbers for Kelpie flight

165

Chapter 10 Case Study: OpenMap

planner. The number of real-world type bindings in OpenMap is 7.6 times of the

number of Kelpie flight planner.
e Does effort level required from user scales linearly?

The comparison in Table. 14 suggests that effort required from user increases super-
linearly to the size of software. The number of user-created bindings for OpenMap

is 9.1 times of the number for Kelpie flight planner.
e Does error checking capability scales well?

The comparison of error checking results suggests that the error checking techniques
perform equally well in moderate and large sized software. The ratio of the number
of real error to the number of reported errors for Kelpie flight planner is 6/12 = 50%,
the same ratio for OpenMap is 23/52 = 44%. Such ratio is almost equal for the two
software systems. The difference is that real-world constraint checking reported 52

errors, which is about 4 times the number of errors reported in Kelpie flight planner.

166

CHAPTER 11

11. CASE STUDY: PRAGMATIC APPLICATION

This research advocates a new engineering paradigm: building interpreted
formalisms instead of building software logic. This paradigm switch introduces various
analysis opportunities and confers substantial benefits to the programmers. In order to
help programmers understand, and thereby adapt to this new technique, this chapter
illustrates using a case study how a programmer will assess this new technology.

In essence, the question for this case study is:

How difficult is this technology to be applied to a programmer’ working

software project?

To answer this question, this case study proceeds in an attempt to follow
programmers’ thinking process. Specifically, we hypothesize that programmers want

to address four questions when they encounter this new technique:
e How to try the technique with minimum effort?

e What are the features or functionality of this technique?

167

Chapter 11 Case Study: Pragmatic Application

e Is this technique useful to my software?

e What effort is required to maximize the benefits?

To address these questions in order, the demonstration is organized in four phases:
familiarity, exploration, relevance, and full utilization. The remainder of this chapter
introduces the details of these four phases.

This case study is on the software Kelpie flight planner. The details of the software

have been introduced in Chapter 8.

11.1 PHASE#1: FAMILIARITY.

GOAL OF THE PHASE

When a new technique is presented to programmers, they frequently start with trials
of a few features. They may prefer not to spend great deal of effort at the very
beginning, but still want to see the potential. So the goals of the first phase are (a) using
the technique with minimum effort, and (b) demonstrating possible benefits.

In order to address the goal of achieving familiarity, it’s necessary to determine

three quantities in applying interpreted formalisms:

e The minimum number of variables that need to be interpreted.

e The minimum number of real-world entities that need to be specified.

e The minimum amount of detail that need to be provided in interpretations.

168

Chapter 11

STRATEGY AND RESULTS

Case Study: Pragmatic Application

In this demonstration, the function distanceTo () was chosen at random as the

starting point. The function computes the distance from one coordinate to another

coordinate. The source code is displayed below:

1 public double distanceTo(final Coordinate 1) {

2

3

10

11

12

13

14

final

final

final

final

final

final

final

double

double

double

double

double

double

double

latl

lat2

lonl

lon?2

dlon

dlat

a =

Math.toRadians (this. latitude);
Math.toRadians (1. latitude);
Math.toRadians (this. longitude);
Math.toRadians (1. longitude) ;
lonl - lon2;

latl - lat2;

Math.pow (Math.sin(dlat / 2), 2d)+ Math.cos(latl)

*Math.cos (lat2)

final double d

* Math.pow (Math.sin(dlon / 2), 2d);

2 * Math.atan2 (Math.sqgrt(a), Math.sqrt(l - a));

return Math.abs (earth radius * d);

Initially, the following three quantities were chosen for this first phase:

e The minimum number of variables to be interpreted is two. They are two global

variables used in the function: 1atitude and longitude.

e The minimum number of real-world entities to be specified is two. The two real-

world entities are latitude in degrees and longitude in degrees.

e The minimum amount of detail needed in interpretations is described below:

169

Chapter 11 Case Study: Pragmatic Application

Interpretation contains specification for real-world entities, and specification for

the relationship between real-world entities and their program elements.

o Inthe specification of real-world entities, two real-world semantic attributes
unit of measurement and reasonable range are specified. Real-world
entity latitude has the unit of degree, and its reasonable range is [-90, 90].
Real-world entity longitude has the unit of degree, and its reasonable range

IS [-180, 180].

o In the specification of the relationship, possible sources of differences and
errors are specified. In the Planner project, the values of real-world latitude
and longitude come from the FlightGear simulator. No sensors are
involved. The major source of difference is floating-point error. Therefore,

no additional details are necessary for this specification.

With the variables interpreted, programmers might want to try error analysis on the
function. The easiest way to see the error-checking capability is by finding out if the
analyses can detect seeded errors. Two errors were seeded in the distanceTo ()
function then real-world constraint checking and range analysis on the function were
conducted. One error was seeded in assignments and the other was seeded in
computations.

The first error was seeded in line 2 where the code was changed to:
final double latl = this. latitude;

With real-world constraint checking, an error was reported on line 7, since 1at1 is

of unit degree, 1at2 Is of unit radians, and their units are inconsistent.

170

Chapter 11 Case Study: Pragmatic Application

The second error was seeded in line 9 where the operator + was changed to -:
Math.pow (Math.sin(dlat / 2), 2d)- Math.cos(latl)

A warning was reported in line 12 by range analysis. The range computed for
variable ais [-1, 11, which caused sqrt (a) to be invalid.

In addition to the above analysis techniques, targeted inspection is available to
programmers at all times. They can access the interpretations and real-world meanings
of the variables through the GUI. More external resources can be found through the
explications embedded in real-world specifications. Further, using the synthesis
technique for real-world type bindings introduced in Chapter 6, the user can access the

interpretations from all calling sites of the two variables among other source files.

CONCLUSION

In this phase, the interpreted formalism was applied with minimum amount of
effort. The basic idea of using interpreted formalisms is demonstrated. Interpretations
have been added to two program variables in one function, and the analysis techniques
found the seeded errors. After this phase, users would have some familiarity with using

interpreted formalisms, and would be ready to proceed to the next phase.

11.2 PHASE #2: EXPLORATION

GOAL OF THE PHASE

After the first phase, programmers are ready to discover more features about the

new technique. They want to know what it is capable of and how it performs under

171

Chapter 11 Case Study: Pragmatic Application

different circumstances. So the goal of this second phase is to explore the capabilities

of the interpreted formalism in different dimensions.

STRATEGY AND RESULTS

In this phase, the performance of the interpreted formalism is explored in two

dimensions:

e Scalability: Exploration in this dimension intends to allow the programmer to
discover if the interpreted formalism concept can be applied on program units of

different sizes.

e Error detections: Exploration in this dimension intends to allow the programmer to

discover how the error checking behaves in different program elements.

In order to explore the scalability, the interpreted formalism was applied to three

programs of different sizes.
e Coordinate.java: This class represents coordinates in coordinate systems.

® MagField.java: This class computes Earth’s magnetic field at a given coordinate

using various models of Earth.

e rPlankEditor.java: This class constructs the graphic interface for adding flying

routes between coordinates.

Table. 16 shows relevant statistics of the three programs with interpreted formalism

defined:

172

Chapter 11 Case Study: Pragmatic Application

Table. 16. Interpreted formalism for programs of different sizes

Program # of interpreted Lines of code # of real-world entities
variables specified
Coordinate.java 33 89 9
MagField.java 14 640 11
PlanEditor.java 4 1138 2

In this phase, real-world specifications are defined with more details. For example,
the specification for real-world latitude contains seven real-world semantic attributes:
unit of measurement, dimension, type of latitude, model of Earth, zero
circle, orientation and feasible range. Every attribute is associated with an
explication which links to more external resources.

As indicated by the table, interpreted formalisms can be created for programs with
different sizes. The effort involved depends on the contents of the subject programs.
As the largest program among the three, pianeditor has only four variables that
require interpretations. Other variables in the program do not interact with the real
world. On the contrary, the program coordinate has the most interpretations, though
its size is the smallest.

To explore the error checking capability, real-world constraint checking and range
analysis were the focuses. The exploration was in two parts. The first part was
conducting the two analyses on the three programs directly. The second part was
detecting seeded errors.

For the first part, Table. 17 summarizes the results:

173

Chapter 11 Case Study: Pragmatic Application

Table. 17. Results of analyzing the three programs directly

Function # of errors reported by # of warning issued by range analysis

constraint checking

Coordinate.java 0 1
MagField.java 1 0
PlanEditor.java 0 0

For the coordinate.java program, a warning message was issued by range

analysis on the following statement:

double heading = Math.acos(
(Math.sin(lat2)-Math.sin (latl) *Math.cos (d))

/ (Math.sin(d) * Math.cos(latl)));

This is caused by the range of argument for Mmath.acos (). The range computed for
the long expression is [-=, +=] due to the fact that the range of the divisor is [0,1].
A division of zero would break the computation.

In the MagFie1d program, the error reported by constraint checking is caused by a
misuse of latitude values of different types (geocentric latitude versus geodetic
latitude).

For the second part, three errors were seeded to different program elements in the
same function used in Phase #1. One error is seeded in assignments, one error is seeded
in an infix expression, and one error is seeded in a return statement.

The first error was seeded in line 2 as in Phase #1, but now the code is changed to:

final double latl = Math.toRadians(this. longitude);

174

Chapter 11 Case Study: Pragmatic Application

If we were in Phase #1, real-world constraint checking cannot detect this error due
to limited definition of real-world semantics. But now, because the semantics of
latitude and longitude are comprehensive, the error can be detected.

The second error was seeded in the computation in line 7 by changing 1at2 into

1on2. The statement after error seeding was:
final double dlat = latl - lon2;

This error was detected by constraint checking since such calculation between
latitude and longitude is disallowed.

The third error was seeded in the return statement by changing line 13 to:
return Math.abs (earth radius*d*2);

Real-world constraint checking cannot detect this error, but range analysis issued a
warning message. The real-world entity corresponding to the return value of this
function is surface distance on Earth in the unit of nautical mile. Its reasonable range

IS [0,108207]. The range of earth radius*d*2 exceeds this reasonable range.

CONCLUSION

In this phase, programmers explore the interpreted formalism to discover its
capabilities. In this demonstration, scalability and error checking capability of the
interpreted formalism were explored. The interpreted formalism was applied to three
files of different sizes. The error checking techniques detected both real errors and
seeded errors in these files. After this phase, users know certain features of interpreted

formalisms. They are ready to apply interpreted formalisms for their benefits.

175

Chapter 11 Case Study: Pragmatic Application

11.3 PHASE #3: RELEVANCE

GOAL OF THE PHASE

Phase #1 and Phase #2 are limited to small functions and a few programs. The effort
required from programmers is quite small. Programmers gain a decent amount of
experiences with the interpreted formalism in those two phases. Now they may start
thinking about how to make this technique useful in their software projects. Therefore
the goal of this phase is to relate the capabilities provided by the interpreted formalism
to the projects of programmers.

Programmers may prefer to establish specific properties of their projects. For
example, some programmers may want to assure that consistency of units of
measurement are not broken in all program statements. Some programmers may want
to assure that all program variables stay within their reasonable ranges. In this phase,
the interpreted formalism is applied to assure the properties of most interest to

programmers.

STRATEGY AND RESULTS

In this demonstration, we hypothesized that programmers mostly want to assure the
consistency of units of measurement in the software. The interpreted formalism was
applied to the whole Kelpie flight planner project for that purpose. Every suitable
program variable was interpreted and thereby linked with their real-world
specifications. The specification for each real-world entity has only one semantic: unit

of measurement. The real-world constraint checking was used to check the errors.

176

Chapter 11 Case Study: Pragmatic Application

Table. 18 summarizes the statistics about the project with the interpreted formalism

added in this phase:

Table. 18. Stats of interpreted formalism for analyzing units of measurement

of programs # of interpreted Line of code # of real-world concepts accessed

variables

126 255 13,884 35

The project has 13,884 lines of code in total. A total number of 35 real-world
specifications were defined, and 255 variables were interpreted.

Constraint checking found four unit related errors in this phase. Two errors are
caused by incorrect conversion between units of nour and units of minute. Another
error is caused by misuse of variables in units of feet per minute and variables in
units of nautical mile per hour. The fourth error is caused by misuse of the units

radians and degree.

CONCLUSION

In this phase, the interpreted formalism is related to users’ software by applying it
to the whole software project. The analysis techniques provided by interpreted
formalism are utilized to assure a specific real-world semantic. In this demonstration,
real-world constraint checking was able to find several real errors pertinent to unit
consistency. After this phase, users are familiar with the usage of interpreted

formalisms. The next phase is full utilization of the interpreted formalism.

177

Chapter 11 Case Study: Pragmatic Application

114 PHASE #4: FULL UTILIZATION

GOAL OF THE PHASE

Phase #3 shows an application of the interpreted formalism to assure a specific
project-wide property. With that experience, programmers may want to fully utilize the
interpreted formalism in their software projects. The goal of this phase is to completely
apply the interpreted formalism in programmers’ projects. In this phase, the goal is to
discover how much benefits programmers will receive, and how much effort is needed

for full utilization.

STRATEGY AND RESULTS

The setup of the interpreted formalism in this phase is based on the setup of Phase
#3 where program variables have already been interpreted and real-world specifications
have been created. However, compared to the last phase, the details of the interpreted
formalism in this phase are much more comprehensive. Real-world specifications
document complete semantic attributes, and real-world constraints are defined for the
whole project. Both real-world constraint checking and range analysis are conducted
on the project.

In this case study of the Planner project, 97 real-world constraints were defined. An
average of 5 semantic attributes were created for real-world specifications. The
semantic attribute of reasonable range was specified for every real-world entity.

A number of real errors were found by constraint checking and range analysis. A

summary of the numbers is shown in Table. 19:

178

Chapter 11 Case Study: Pragmatic Application

Table. 19. Real errors found with full utilization

of errors reported by constraint checking # of warnings reported by range analysis
violation of constraints improper usage
6 6 12

Constraint checking found 6 violations of constraints. Four of them came from
inconsistency of units we described in Phase #3, the other two are misuses of latitudes.
Details about these six errors have been introduced in the case study of Kelpie flight
planner.

Range analysis found 12 statements in which computations are error-prone. Some
of the computations have possible division of zero. For example, the computation

below could be broken when headingRadians IS Z€ero:
feetEastL = length / 2 * Math.sin (headingRadians);
Some of the computations involve inconsistent ranges. For example,

final double timeToBOD =

altToBOD / plan.getAircraft () .getSinkSpeed() / 60;

The right side invokes the wrong function getsinkspeed (). The correct function
should be getsinkrate (). The two function calls return values whose ranges are ten
times different. Thus, for the whole statement, the range for the left side is largely

different from the range for the right side. Such difference raised a warning.

CONCLUSION

In this phase, the interpreted formalism is fully utilized in the Kelpie flight planner

software to gain maximum benefits. Real-world constraint checking and range analysis

179

Chapter 11 Case Study: Pragmatic Application

both have found several real errors in the software. The benefits introduced by the

interpreted formalism is substantial.

11.5 OBSERVATIONS

This demonstration lets us gain some insights about the utility of the interpreted

formalism. Observations from this demonstration are summarized below.
o Versatility

Interpreted formalism supports various analysis opportunities. Programmers can
expect different kinds of benefits. As shown in all phases, real-world semantics can be
inspected to clarify misunderstandings, constraint checking was used to detect
violations, and range analysis was used to find error-prone calculations. The power of
the interpreted formalism can be considerable. Programmers can choose their preferred

way of utilizing the interpreted formalism.
o Effectiveness

Application of the interpreted formalism requires effort from programmers.
Fortunately, such effort yields benefits early. As illustrated in Phase #2, with only three

programs and limited effort involved, a real error was found and a warning was issued.
e Usability

Application of the interpreted formalism emphasizes integrity of the original source

code. Artifacts of interpreted formalism are manipulated separately from the source

180

Chapter 11 Case Study: Pragmatic Application

code; analyses and error messages are shown in standalone interfaces. Programmers

can develop source code and utilize interpreted formalism in parallel.

181

CHAPTER 12

12. CASE STUDY: THE SYNTHESIS FRAMEWORK

12.1 INTRODUCTION

Chapter 6 introduces the concept of synthesis framework to develop interpreted
formalisms. As indicated by the results in the evaluation, the synthesis mechanisms can
reduce the effort required from users. In order to get more insight into the utility and
performance of real-world type synthesis, the mechanisms were applied to the software
project Kelpie flight planner for which a complete real-world type system has already
been developed in Chapter 9 with no automated support. Having an existing complete
example real-world type system, we were able to compare the results of the synthesis
mechanisms with the human-generated system. Details of Kelpie flight planner has
already been introduced in Chapter 9.

The following of this chapter presents data related to synthesizing candidate real-

world types, real-world type bindings, and real-world type rules in turn.

183

Chapter 12 Case Study: The Synthesis Framework

12.2 SYNTHESIS OF TYPE CANDIDATES

The total number of identifiers in the project is 28,754. Most classes in the project
have less than 200 identifiers, and a few have more than 2,000. The identifier parser
produces 45,585 terms in total, and so the average number of terms per identifier is
approximately 1.59. In total, 9,352 identifiers were parsed into two terms, 2,839
identifiers were parsed into three terms, and 582 identifiers were parsed into lists with
more than three terms.

The first stage of the assembler searches for identifiers whose lists of terms contain
a noun (major term). Of the 28,754 identifiers that were identified, 20,140 had a noun
within their lists. These identifiers contained a total of 30,358 terms. The second stage
of the assembler merges the lists of terms for identifiers that possess the same major
term. 676 different terms were determined to be nouns and constitute the final set of
major terms. Thus, the draft set of real-world type candidates has 676 entries. The third
and final stage of the assembler coalesces the set of candidates using WordNet’s

lemma. After this stage, the final set of candidates had 528 entries.

350 +
300 -
250 -
200 -
150 -
100 -
50 ~

Number of candidates

0 5 10 15 20 25 30 35 40 45 50
Number of potential attributes

Fig. 32. Number of potential attributes for candidates

184

Chapter 12 Case Study: The Synthesis Framework

Every candidate in the set is a potential real-world type. The major term in the
candidate usually leads to the primary meaning or type name. The associated terms that
appear with a major term are considered as potential real-world attributes for the real-
world type. Fig. 32 shows how many potential real-world attributes each candidate in
the final set could have.

Beginning with the set of candidates, the selector applies two selection criteria: (1)
the frequency of major terms, and (2) the number of possible attributes a major term
has.

For criterion 1, the selector sorts the list of candidates by the frequency of major
terms, and then reduces the set by cutting all terms with frequencies below a selectable
threshold. Table. 20 shows the results of applying the first criterion with different
thresholds. The first column is the threshold values, and the second column lists the
number of terms having frequencies more than the threshold value. The third column
is the average frequency of the terms with frequencies above the threshold, and the

fourth column shows the average number of potential attributes the terms have.

Table. 20. Selection based on frequency of major terms

Threshold values #ofterms | Average frequency Average # of attributes
200 29 341 20.2
100 77 181 13.6
50 142 150 10.5
30 217 111 8.2
20 240 103 7.7

185

Chapter 12 Case Study: The Synthesis Framework

For criterion 2, the selector sorts the list of candidates by the number of attributes
each term has and eliminates terms whose number of potential attributes are below a
selectable a threshold. Table. 21 shows the results of applying the second criterion with

different thresholds.

Table. 21. Selection based on number of potential attributes

Threshold # of terms Average # of Average frequency (of major
values attributes terms)
20 21 26.9 302
10 73 17.1 191
5 146 11.8 128
3 248 8.3 89
2 331 6.7 71

12.2.1 ANALYSIS

In the synthesis mechanism, the interpreter follows the selector. In the interpreter,
human judgment is used to choose actual real-world types of interest from the set of
candidates. The expectation is that human insight will allow rapid selection and
subsequent synthesis of appropriate syntactic structures.

In this case study, rather than operating the interpreter phase, we compared the set
of candidates with the actual real-world type definitions developed separately. The

latter were treated as a “gold” set for purposes of evaluation.

186

Chapter 12 Case Study: The Synthesis Framework

Table. 22 shows the assessment of the candidate set based on selector criterion 1
(frequency of occurrence of the major term) together with our assessment of the

connections between the set of candidates and the real-world types that we identified.

Table. 22. Connections between candidates and known real-world types based on criterion 1

Threshold values # of terms # of Important # of Real-world types can be
major terms formed
200 29 2 11
100 77 7 18
50 142 15 21
30 217 21 25

For purposes of this analysis, we define a term to be important if, in our opinion,
the term could lead directly to a real-world type definition. The first column and the
second column are repeated from Table. 20. The third column shows how many
important terms are in the subsets. The last column shows how many real-world types
could be formed from the important major terms. The number in this column is
typically larger than the number in the third column because one major term might be
used to construct more than one real-world type. For example, the term 1at can be used
to define real-world types geocentric latitude, geodetic latitude and others.

With a threshold value of 50 (frequency), we were able to form 21 real-world types.
The total number of real-world types in the application is 35, and so we conclude that
a large proportion of the actual real-world types could be formed from the candidates.
With the lower threshold, application and domain experts will have to review more

terms, but more real-world types could probably be formed.

187

Chapter 12 Case Study: The Synthesis Framework

Table. 23 shows the assessment of the candidate set based on selector criterion 2
(number of potential attributes of the major term) together with our assessment of the
connections between the set of candidates and the real-world types that we identified.

The first column and the second column are repeated from Table. 21. With a
threshold value of 5, we could construct 20 real-world types and 23 when the threshold

was set to 3.

Table. 23. Connections between candidates and known real-world types based on criterion 2

Threshold values # of terms # of important # of Real-world types can be
major terms formed

20 21 2 11

10 73 5 15

5 142 10 20

3 217 15 23

The results shown in Table. 22 and Table. 23 suggest that reviewing approximately
80 terms from the candidate set can reveal a substantial fraction the useful set of actual

real-world types.

12.3 SYNTHESIS OF REAL-WORLD TYPE BINDINGS

Section 6.2.3 introduces the synthesis mechanism for real-world type bindings. The
synthesis proceeds in 3 stages: field, method, and local variable. Table. 24 describes

data collected at each stage.

188

Chapter 12 Case Study: The Synthesis Framework

Table. 24. Performance of real-world type binding synthesis

Process stage # of bindings seeded # of bindings synthesized | Total # of bindings

by developers

Field 28 64 92
Method 64 65 221
Local variable | 30 4 255

In the table, the first column shows the stage of the type binding synthesis process.
The second column shows the number of bindings we seeded acting as developers. The
third column shows the number of type bindings automatically generated by inference.
The fourth column shows the total number of bindings after inference at that stage.

In this demonstration, we maximized the possibility of parameter inference, i.e., if
the parameters were bound with appropriate real-world types, these types were
propagated to all arguments. For assignment inference, we listed eight assignments that
we trust as permitted assignment for inference.

In the field stage, we add 28 real-world type bindings to all suitable fields, and
inference then generated 64 type bindings, mainly from return statement inference and
assignment inference. In the method stage, we seeded 64 type bindings to suitable
parameters in different method declarations, and then inference produced 65 bindings
for arguments in various method invocations, primarily from parameter inference. In
the local-variables stage, we seeded 30 type bindings to local variables, and 4 bindings
were generated by assignment inference.

The project required 255 bindings in total, and 133 of these were generated

automatically, i.e., 52%. This fraction suggests that the combination of some human

189

Chapter 12 Case Study: The Synthesis Framework

effort and various forms of inference can yield reasonable performance in binding

program elements to real-world types.

12.4 SYNTHESIS OF REAL-WORLD TYPE RULES

We determined the number of real-world type rules that could be synthesized from
every class. The necessary type rules were extracted from a small minority of the files.
Most of the project files yielded less than 20 rules, but a few yielded more than 50 rules
each.

In our hand-build, real-world type system for the Kelpie flight planner project, we
created a total of 97 real-world type rules. The synthesizer mechanism extracted
candidate rules from every class, and the total number extracted from individual files
was 260. Many of these candidate rules are the same, and they can be reused in different

methods of one class or methods across different classes.

125 PRAGMATIC APPLICATION WITH SYNTHESIS

Chapter 11 illustrates the practical application of the interpreted formalism. Such
application is composed of four phases: familiarity, exploration, reference, and full
utilization. In practice, the application of the interpreted formalism is facilitated by the
synthesis mechanisms introduced in this chapter. Synthesis mechanisms assisted

creating the real-world type system; existing artifacts were reused. The figure below

190

Chapter 12 Case Study: The Synthesis Framework

shows the process of applying the interpreted formalism with the support of synthesis

mechanisms:

]

t

' Real-world type
: synthesizer
i

1

Real-world type

r‘— candidates
1
' ___/’\ Real-world type

libraries

Phase# 1. Familiarity

-

[
|
|
[
[
[
|
[
[
I
[
[
I
I
[
|
[.
| Phase=2. Exploration
|
[
[
I
|
[
[
I
[
[
I
|
[
|
[
|
|

Real-world tvping

Real-world tyvping
link candidates yping

synthesizer

Phase=3. Relevance

rules candidates 5
rules synthesizer

__'/’\

Phase#4. Full Utilization

1
1
! [
! i
] '
' > '_ . o, mMe ‘
| Real-world type : Real-world type
1 t
v ! -
! 1
|]
! t
d 1
[

Application stages Facilitations

Fig. 33 . Pragmatic application with synthesis framework

In this process, synthesis mechanisms were leveraged in three phases:

e Familiarity Phase. In this phase, real-world type candidates are provided by
synthesizer and existing libraries. Engineers can review these candidates, and create

real-world types as needed.

191

Chapter 12 Case Study: The Synthesis Framework

¢ Relevant Phase. In this phase, engineers attempt to add real-world type bindings to
all elements in the software to gain maximum benefits. A large number of the

bindings were automatically created by the binding synthesizer.

e Full Utilization Phase. In this phase, real-world constraint checking is used to check

all real-world type rules. A large portion of these rules are synthesized.

12.6 EFFORT LEVEL ASSESSMENT

The data presented in this chapter can be used to assess the effort level as part of
the evaluation. The effort level required from users is evaluated by answering the
questions raised section 8.3.3.

The effect level is assessed by answering a list of questions:
e Does real-world type system require excessive effort from the users?

The data collected in this case study suggest that necessary effort is needed, but not
excessive effort. As described in Chapter 6, users can develop real-world type
systems incrementally. Also, with the help of synthesis mechanism, the effort
required from users are largely reduced. Without any prior knowledge about the
software system, the author spent approximately 40 man-hours to fully utilize the

capability of the real-world type system.
e Can synthesizers provide support for reducing users’ effort?

Yes. Efforts are required in developing real-world types, real-world type rules, and

real-world type bindings. As introduced in Chapter 6, the synthesis framework

192

Chapter 12 Case Study: The Synthesis Framework

provides support for development. In this case study, the framework clearly
demonstrates its capability. For the whole software system, 21 of the 35 real-world
types can be formed from the candidate real-world types, 133 of the 255 real-world
type bindings are synthesized, and all 97 real-world type rules can be chosen from

the synthesized 260 candidate rules.
e Are the synthesizers efficient in reducing users’ effort?

Yes. As described above, 21 of 35 real-world types can be formed from candidates;
the percentage is 60%; 133 of 255 real-world type bindings were generated; the
percentage is 52%; all 97 real-world type rules can be formed from the 260 candidate
rules; the percentage is 100%. On average, all kinds of effort were reduced by more

than 50 percent.

193

CHAPTER 13

13. RELATED WORK

This dissertation advocates that software engineers should build not just traditional
software, but interpreted formalisms that combine software logic with rigorously
documented interpretations. A variety of previous research results are relevant to the
ideas presented in this dissertation. This chapter summarizes the results in various
related areas and provides references for more detailed information.

The notion of uninterpreted logic and the associated need for an interpretation is
clear and well understood in the field of mathematic logic. Unfortunately, these notions
are far less well understood in the field of software engineering.

As noted in the Chapter 1, section 1.3.3, the four-variable model [65] is very
preliminary form of an interpretation for the logic defined by software. Despite this
work, no significant progress has been made in the development of interpretation since
the work by Miller et.al [57].

This dissertation presents the first comprehensive approach to the concept of

interpretation for software. As such it builds on several related fields, especially the

195

Chapter 13 Related Work

field of type theory. However, it doesn’t build on an existing literature on interpretation

beyond the work of Parnas and Miller et.al.

13.1 MODEL THE RELATIONSHIPS BETWEEN THE REAL WORLD AND

THE MACHINE WORLD

Interpreted formalism is a new concept that models the relationship between the
real world and the machine world. Research effort on requirements and specification
have also modeled the connections between the real world and the machine world [31,

38, 39, 40, 57, 65].

13.1.1 FOUR-VARIABLE MODEL

The four-variable model proposed by Parnas and Madey defines the connections in
the IN and OUT relations [65]. The IN and OUT relations define the connections
between the mathematical variables as available to the software and the environmental
variables in the real world. The relationship between real world entities and machine
world is described mathematically. The hardware and software requirements are
intertwined in the REQ relation.

Parnas and Madey proposed a four-variable model that implied the connections in
the IN and OUT relations. The IN and OUT relations in the four-variable model define
the connections between the mathematical variables as available to the software and

the environmental variables in the real world. As Parnas and Madey state, “IN describes

196

Chapter 13 Related Work

the behavior of the input devices. IN is a relation rather than a function as a result of
imprecision in the measurement and transducer devices. The Out relation describes the
behavior of the output devices. It is a relation rather than a function because of
unavoidable device imperfections.

Four-variable model is different from the interpreted formalism in several ways.
First, the four-variable model focuses mostly on variables and attempts to describe the
relationship between real world entities and machine world as purely mathematically
relations. We argue that the semantic information for a real-world entity is critical as
well. The interpretation for a real-world entity embodies all details that will convey the
entity accurately. Second, the four-variable model uses absolute real time, which is
implicitly assumed to be the same throughout requirements and specification.
Interpreted formalism states there are substantial distinctions between the physical real
time and the time implemented by a machine. Environment variables refer real time,
whereas machine variables refer the time used in the machine. Third, system hardware
and software requirements are intertwined in the REQ relation in the four-variable
model. This makes the tracing of both hardware and software requirements hard.

Interpreted formalism explicitly separates the effect made by software and hardware.

13.1.2 EXTENDED FOUR-VARIABLE MODEL

Miller and Tribble’s extended four-variable model had noticed that in the original
four-variable model, system and software requirements are inextricably intertwined.

They introduced an extension to the four-variable model that isolates the virtual

197

Chapter 13 Related Work

versions of the monitored and controlled values in subsystems [57]. The relationships
emerge as relations between virtual and real versions of variables.

Several new concepts were introduced. MON” and CON” are the virtual versions
of the monitored variables and controlled variables defined in the subsystem
specification in the software. REQ’ contains the software requirements. IN’ and OUT’
map to the hardware specification. The extended model also states that the MON’ and
CON’ are different from MON and CON. The differences in timing are introduced
when sensing and setting the input and output variables. With interpreted formalism,
such differences should be documented explicitly.

Interpreted formalism not only documents the connections and relationships
between variables in software systems and elements in the real world, but also

leverages such connections to enforce real-world constraints on software systems.

13.1.3 PROBLEM FRAME AND REFERENCE MODEL

The work of Zave and Jackson characterizes phenomena of interest to the system
and separates world phenomena from machine phenomena [38, 39, 40]. The reference
model of Gunter et al. gives a detailed explanation of different classes of phenomena
and the relationship between environment and system [31].

These results model the picture of the connection between machines and the real
world. In contrast with these results, real-world types provide a comprehensive set of
real-world semantic attributes, and emphasize imposing constraints inherited from the

real world on programs.

198

Chapter 13 Related Work

13.1.4 CYBER-PHYSICAL SYSTEM

Researchers attempted to model the relationship in the context of cyber-physical
systems. Johnson et al developed an approach to detection of undocumented
assumptions in Simulink/Stateflow models in which traces are used to develop system
invariants [41]. Since the source for the approach is a high-level system model, the
approach can detect undocumented assumptions at the level of real-world entities. The
approach does not include mechanisms to define real-world properties over and above
those available in Simulink/Stateflow.

Representing multiple domains, including both physical and cyber, and
determining inconsistencies between those domains has been addressed by Bhave et al
using a set of architectural views [7]. The views are derived from various models and
a base architecture for the subject cyber-physical system. The approach is based on
typed graph models of the subject system, and consistency is defined by morphisms

from views to the base architecture.

13.2 TYPESYSTEM

This dissertation introduces a new type system, real-world type system, as an
implementation of interpreted formalism. The analysis of real-world constraint
checking is also a form of type checking. This section compares real-world types with

a few other types and type systems.

199

Chapter 13 Related Work

13.2.1 CONVENTIONAL TYPE SYSTEMS

A real-world type system is an enhanced and extended version of the concept
underlying conventional type systems with the goal of supporting checking constraints
inherited from the real world in addition to default type rules.

Conventional types are closely coupled with the machine context. As a result, they
cannot comprehensively describe real-world information. For example, most real-
world semantic attributes are associated with compile-time values; these attributes and
values should not be represented as variables. Some real-world semantic attributes
might be represented as variables, fields, or other structures. However, these program
elements can only convey limited real-world meanings through identifier names or
unstructured comments. In addition to real-world semantic attributes, the relationships
between real-world entities and their machine representations are also ignored or
vaguely expressed in conventional types. The discrepancies caused by sensors and
timing differences are frequently neglected. As a result of these problems, real-world
constraints are insufficiently documented, thereby enforced in ad hoc ways or absent
in conventional type systems.

Real-world types are designed to document the missing information and use the

information to enforce real-world constraints.

13.2.2 ENHANCED TYPE CHECKER

Powerful extensions to the basic notion of type have been developed, in particular

in the form of pluggable type systems [21, 52, 56, 66]. Pluggable type systems [66]

200

Chapter 13 Related Work

enhance the built-in type systems in applicable formal languages and provide support
for additional checking capabilities. The Checker framework [21, 66] and JAVACOP
[52] implement the idea of pluggable type system for Java. These frameworks refine
built-in type systems to allow users to define additional types and check additional type
rules.

Dependent types [12] are another powerful type system concept that allows
programmers to specify and enforce rich data invariants and guarantee that unwanted
program behaviors are detectable by analysis. They are important in computing
environments where users must certify and check properties of un-trusted programs
[63]. Dependent type systems, such as Coq [17] and Agda [3] provide formal languages
to write mathematical definitions, executable algorithms, and theorems, and then
support development of proofs of these theorems.

Pluggable type systems and dependent type systems are designed to provide greater
flexibility in type mechanisms. Increased flexibility is valuable in supporting language
expressivity. However, the resulting flexibility remains within the mathematical
framework of machine logic, and does not address the notion of deriving and exploiting
type information from the real world. They provide limited support on documenting
real-world semantic attributes and checking real-world constraints. Relationships
between real-world entities and their machine representations are frequently

undocumented.

201

Chapter 13 Related Work

13.3 CHECK REAL-WORLD CONSTRAINTS

An interpretation based on real-world types support analyzing real-world
constraints. As special kinds of real-world constraints, dimensional analysis and unit
checking have been explored in many programming languages [15, 30, 82]. Previous
research focused on extending programming languages to allow checking these
constraints on dimensions of equations are not broken. Extensions to support
dimensional and unit analysis have been developed for several programming
languages. For the most part, previous research focused on checking dimensions of
equations and validating unit correctness [5, 19, 30, 37, 44, 68]. Nevertheless, these
efforts are limited to basic rules derived from dimensions or combinations of entities
with different units.

The Autocert system develops source-code constraints based on analysis of real-
world information contained in Simulink models [20]. The checking that this enables
is, in part, based on real-world information but does not enable the comprehensive
checking that real-world types enable.

Jung and Saglietti defined a language for describing interfaces between system
components to support fault detection in component interfaces [42]. The language
facilitates the definition of system details including those that we refer to as real-world
attributes such as units. From interface descriptions, software wrappers can be derived
to align interfaces thereby enabling the reuse of reusable components. The approach
does not address the issue of real-world information and analysis within software

source code.

202

Chapter 13 Related Work

By basing the analysis on a type system, the real-world type system permits a
general approach that can be tailored to a specific domain or to a specific application.
Type rules in a real-world type system can be derived from dimensions, units, or any

other real-world sources.

13.4 IMPROVE LOGIC UNDERSTANDING AND MAINTENANCE

One of the benefits provided by interpreted formalism is increasing understanding
of the formal logic. Real-world semantic attributes in real-world types can improve the
understanding of logic. Various research efforts have been made to improve human
understanding by linking structured semantic information in real-world context to

logic.

1341 INTEGRATION OF SEMI-FORMAL AND FORMAL NOTATIONS

Some research work attempted to improve the understanding of formal
specification by integrating semi-formal and formal notations. Such integration may
make formal specification more approachable. In a survey of industry, Craigen, Gerhart
and Ralston [18] found that “better integration of formal methods with existing
software assurance techniques and design processes was commonly seen as a major
goal”. They concluded, “Successful integration is important to the long-term success
of formal methods.” Fraser, Kumar and Vaishnavi [26] described a framework for

classifying formal specification processes.

203

Chapter 13 Related Work

13.4.2 VISUALIZATION OF FORMALISM

Several research groups have developed frameworks to build visualization of
formal logic. Visualization of formalism is often realized by mapping from formalism
to graphical notations. An early approach is the Z visualization [45], which makes use
of constraint diagrams. The notation is able to express predicate logic, but there is no
integration into existing frameworks.

The approach of Fekih et.al maps B specifications to UML [75]. It takes the state
space of the specification and creates a UML class for every abstract set that is element
in the domain of relations. Idani and Ledru improve the approach by mapping occurring
relations to UML associations [34]. Other than B method, the work of Bollin [10]
discusses ways in transforming formal Z specifications to UML in order to open the
documents to a wider range of stakeholders. A few other researchers have done some
similar works. M. B. Ozcan [64] described an approach to visualizing executable
formal specifications based on Z notation. Razali. etc [70] proved the efficiency of
using graphical notation in understanding formal specifications by doing experimental
comparison. Ait-Ameur et.al [4] proposed to bring more information in the context of
system into the development of software systems.

The results of those works provide an indication that the integration of both semi-
formal and formal notation is useful in promoting specification or model
comprehensibility as compared to the formal notation alone. Real-world type systems
use real-world semantic attributes to describe the real world concepts. Natural

languages are used to give explications for real-world concepts.

204

Chapter 13 Related Work

13.4.3 ONTOLOGY

Ontology is a widely used structure for documenting domain concepts and
relationships among the concepts. Ratiu et.al developed techniques to improve the
understanding of program elements by making explicit mappings between ontology
classes and program elements [71, 72]. This paper [71] presents a formal framework
for describing the mappings between domain concepts and the program elements, real-
world relations and program relations. This framework allows describing typical
classes of diffusion of the domain knowledge in code. Based on this formal framework,
they describe an algorithm to recover the mappings between entities from an ontology
and program elements.

Another paper from Ratiu [72] presents a formal framework which can be used to
evaluate the implementation of the real-world concepts within a library. This
framework is based on a common representation of ontologies and programs. Using
this framework they characterize general classes of mismatch between the concepts
implementation and the real world. They also present relevant mismatches together

with examples that they (semi-)automatically identified within the Java library.

1344 INTENT SPECIFICATION

One important propose of interpretation is to describe the desired effect of formal
statements. The idea of explaining why things are to be done the way they are specified
had been proposed in Leveson’s work on intent specifications [48, 49, 88]. Intent

specifications explicitly state the relationship between means and ends in the intent

205

Chapter 13 Related Work

dimension so that developers can use the information not only during software
construction but also during other life cycle phases such as validation and maintenance.

Leveson’s position also makes several essential points, but it is incomplete
regarding theoretical arguments motivating why, on a more basic level, formal
languages are insufficient to define software function. These arguments focus on
supporting developers’ cognitive processes, but do not address the foundational
elements to enable developers to understand what a specification says. If a specification
lacks the natural language necessary to enable a developer to understand it precisely,
even knowing why particular statements were refined the way they were could leave

the developer missing important details necessary to specify a system correctly.

13,5 SYNTHESIS MECHANISMS

Real-world type system contains synthesizers that extract real-world information
from software logic. The information is used to construct candidate real-world types.

Other researchers have made efforts that are relevant.

135.1 TYPE PROVIDER

Research effort had been made on synthesizing types in other type systems. Type
providers in F# extend the language so that the compiler can generate both new types
and new code that leverage these types with particular emphasis on the schemas of

external data [76]. Type providers in Idris extend this idea to languages with dependent

206

Chapter 13 Related Work

types [13, 16]. Neither F# nor Idris addresses the general issue of defining logic

interpretations.

13.5.2 TYPING SYNTHESIS

The real-world type system contains a synthesizer of real-world type binding. The
synthesizer produces candidate type bindings for program elements in the real-world
type system. Efforts have been made to infer types for other type systems. For
pluggable type system [21], researchers have implemented type inference algorithms

to add types for non-annotated code [22, 56].

13.5.3 CONCEPT LOCATION

Concept location is the idea of identifying parts of a software system that
implements some aspect of the problem. Concept location is related to the mapping of
real-world entities to software [1, 2, 28, 29, 33, 51, 69] but with the goal of improving
program understanding.

Information retrieval based approaches have been developed to reduce the effort
required to understand and to locate source code that requires change. Poshyvanyk
attempted to further reduce the effort by producing a concept lattice using the most
relevant attributes (terms) selected from the top ranked documents (methods) [69].
Grant et al proposed approaches that identify statistically independent signals that

could lead to concepts [28].

207

Chapter 13 Related Work

The use of parts of speech of terms in identifiers has been investigated as a means
to extract information from the source code. Binkley improved identifier name tagging
using templates and defined rules to improve the structure of field names [4]. Hill et al
generated noun, verb and prepositional phrases from the signatures of program

elements [15].

13.5.4 PARTS OF SPEECH

Synthesizer for real-world types leverages parts-of-speech (Pos) of the terms
composing identifiers. Other researchers have also used PoS of the terms in identifiers
to extract information from the source code [1, 2, 8, 85]. Binkley [8] improved
identifier name PoS tagging using templates and defined rules to improve the structure
of field names. Hill et al. [33] have generated noun, verb and preposition phrases from
the signatures of program elements.

Parts of speech have also been used to extract domain models, such as ontologies.
Abebe and Tonella [1, 2] have used the parts of speech of terms and the natural
language dependencies to extract ontologies from source code. Raitu et al have
proposed an approach to extract domain-specific ontologies from APIs [71, 72].

WordNet [78] is used in the process of synthesizing real-world types. Other
researchers [74] also used it to automatically extract semantics and relationships

between the semantics.

208

Chapter 13 Related Work

13.6 CONTEXT REPRESENTATION AND REASONING

The notion of context is important in many areas of computing. In ubiquitous
computing, for example, context is needed to enable suitable processing of inputs
received [46, 67]. This notion of context is related to the basic functionality of the
system and is closely linked to machine learning and other aspects of artificial
intelligence. Context representation and reasoning are related to the rigorous definition
developed in this chapter only to the extent that it helps to identify the real-world

entities with which the system of interest interacts.

13.7 UNCERTAINTY OF HARDWARE AND SOFTWARE

An interpretation documents the approximation between the values in the real
world and the values in the machine world of the same real-world entity. Such
approximation is usually caused by sensors and hardware. It is an important source of
uncertainty. Research effort have been made on quantification, communication, and
interpretation of such uncertainty [11, 81]. The uncertainty is modeled as an abstraction
which can be added to different programming languages. The pragmatics of the

approach has been demonstrated for different applications and hardware systems.

209

CHAPTER 14

14. CONCLUSION

This section concludes the work and summarizes the contributions, limitations, and

future work of this dissertation research.

141 OVERVIEW

This dissertation research introduces a new artifact, interpreted formalism, to define
software systems. The interpreted formalism is based on the idea that a computing
system is composed of a computing platform, a set of physical entities, and a
relationship between the two. The emphasis of interpreted formalism is an explicit
definition of the relationship between the physical entities and the computing platform.

The relationship has been defined using the notion of logic interpretation. The
interpretation defines explicitly the meaning of items in the logic regarding physical
entities and their associated properties. Many important invariants can be derived from

physical, i.e., real world, entities in a comprehensive and systematic way. Defining the

211

Chapter 14 Conclusion

relationship between physical entities and the computing platform in this way enables
a new class of fault detection mechanism for the logic.

This dissertation presents a pragmatic approach to the development and application
of the interpreted formalism concept. A preliminary implementation of the interpreted
formalism, the real-world type system, is introduced. For a specific system, the real-
world type system can be developed without impeding the development of software
logic. The development of real-world type systems is facilitated by an automated
synthesis framework. The synthesis framework can effectively guide creating
components of real-world type systems. The effort required from users is greatly
reduced.

The pragmatics of developing and applying the interpreted formalism was
illustrated with case studies. In these case studies, the interpreted formalism was
successfully applied to open-source software systems in the form of real-world type
systems. The new analysis techniques provided by the interpreted formalism detected
real errors that had not been reported before.

The interpreted formalism and real-world type systems were evaluated by
applications on several case studies. The evaluation was on several properties:
feasibility, error detection capability, effort level, and scalability. The results suggest
that (1) the interpreted formalism is feasible for medium and large software systems,
(2) error detection mechanisms have detected a substantial number of real errors from
different software systems, (3) the synthesis framework significantly reduces the effort

required from users.

212

Chapter 14 Conclusion

14.2 CONTRIBUTIONS

This dissertation research supports its thesis statement by the following

contributions:

e |t introduces a new paradigm for software development. This work advocates that
the interpreted formalism rather than isolated software is the right artifact for the
development of safety-critical systems. An interpreted formalism combines logic

with an explicit interpretation of the logic.

e |t introduces an explicit structure for defining interpretations. In this work, the
structure of the interpretation is a set of real-world types and a set of real-world type
rules defined within the framework of a real-world type system. Real-world types
convey meanings of real-world entities by documenting their real-world semantic
attributes. Real-world constraints document constraints and invariants derived from
the real-world context so analysis techniques can be developed to check these

constraints.

e It provides a framework for systematic detection of software faults that violate real-
world invariants. Several analysis techniques that leverage the contents in an
interpretation were developed to detect candidate errors that violate real-world
constraints. Real-world constraint checking detects violations of real-world type
rules statically. Reasonable range analysis looks for possible values outside of

reasonable ranges by conducting interval analysis on the programs. Targeted

213

Chapter 14 Conclusion

inspection allows users to inspect the programs for possible violations. Assertion

generation produces assertions for runtime checking around program entities.

e It introduces a synthesis framework that facilitates developing real-world type
systems for software systems. Three synthesizers were developed: (a) a synthesizer
that produces candidate real-world types by processing application materials, (b) a
synthesizer that automatically infers real-world type bindings for various kinds of
program entities, (c) a synthesizer that extracts candidate real-world type rules from
program expressions. The synthesis framework significantly reduces the effort from

users when developing real-world type systems.

e |t provides a practical approach to conduct units checking on software systems. The
error analysis of units checking has been provided by the real-world type system as
a standalone functionality. Prior research work on units checking lack evidence and
results on large-scale software system mostly due to the amount of effort required
for using them. Our approach combines synthesizers of bindings with error detection
so that it can be pragmatically applied to large-scale software systems. The case
study of OpenMap provides evidence that the approach is feasible, practical, and

effective.

e It conducted several case studies that assessed and evaluated the feasibility, error
detection capability, effort level, and scalability of the interpreted formalism by
applying interpreted formalisms to two geographic software systems. The results
provided by case studies suggest that the interpreted formalism is applicable,

practicable, and useful in modern software systems.

214

Chapter 14 Conclusion

e |t developed a prototype that can be used on modern software systems for error
detections. The prototype has been used in the case studies and has found a
substantial number of errors. It can be practically used in different open-source

software projects.

14.3 LIMITATIONS

Although the interpreted formalism provides significant benefits to the engineers,
it has limitations in several aspects.

The development of interpreted formalisms requires developing interpretations in
addition to software logic. Development of interpretations requires extra effort from
users. Engineers might be reluctant to develop the interpretations.

Also, the contents in an interpreted formalism, e.g., real-world semantics and real-
world invariants, introduce a source of detects over and above those that might be
present in the programs.

The current implementation of interpreted formalisms, real-world type systems, has
not established the theory of soundness and completeness. The results of real-world
constraint checking greatly depend on real-world type rules created by the users. Also,
the analysis techniques provided by interpreted formalisms target static real-world
invariants. Real-time related properties are not considered. For example, the rate of
change of aircraft’s speed obeys constraints in the physics. It is not practical to enforce

such constraints by current structure of interpreted formalism.

215

Chapter 14 Conclusion

144 FUTURE WORK

The time and resources available for this dissertation research were limited.
Improvement of the interpreted formalism is left to future work. The future work

contains but is not limited to:

e Expand the structure of interpretations to systematically document and check
complex real-world constraints and invariants. For example, temporal properties of

real-world entities, e.g. rate of changes, could be documented and enforced.

e Improve the synthesis framework to provide comprehensive candidate real-world

types and type rules.

e Expand the analysis techniques to leverage the differences between real-world

entities and entities in programs documented for error detection.

e Expand the interpreted formalism so it can be easily integrated with different

programming languages.

This research mainly concerns the feasibility and practicality of the interpreted formalism,
which was evaluated through several case studies for application on two open-source
software systems. The case studies were conducted by the author of the research and were
restricted by time and resources available to a single engineer. More evaluations of the
interpreted formalism, e.g. efficacy and utility of interpreted formalisms when applied on
huge-scale software systems, application of interpreted formalisms involving different
engineers, and application of interpreted formalisms on different systems and domains, are

left to future work.

216

BIBLIOGRAPHY

1. Abebe, S., and P. Tonella. 2010. "Natural language parsing of program element Names for
Concept Extraction™. In Proceedings of the 18th International Conference on Program
Comprehension (ICPC), Braga, 2010, 156-159. IEEE Computer Society, 2010.

2. Abebe, S., and P. Tonella. 2011. "Towards the extraction of domain concepts from the
identifiers". In Proceedings of the 18th Working Conference on Reverse Engineering
(WCRE), Limerick, 2011, 77-86. IEEE Computer Society, 2011.

3. Agda. http://wiki.portal.chalmers.se/agda/pmwiki.php.

4. Ait-Ameur, Y., J. P. Gibson, and D. Mé&y. 2014. "On implicit and explicit semantics:
Integration issues in proof-based development of systems." In Leveraging Applications of
Formal Methods, Verification and Validation. Specialized Techniques and Applications,
edited by Tiziana Margaria and Bernhard Steffen, 604—618. Springer, 2014.

5. Antoniu, T., P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and M. Felleisen. 2004.
“Validating the Unit Correctness of Spreadsheet Programs”. In Proceedings of the 26th
International Conference on Software Engineering (ICSE), Edinburgh, Scotland, 2004,
439-448. IEEE Computer Society, 2004.

6. Bergin, C., and P. Harding. 2013. “Cygnus delays ISS berthing following GPS
discrepancy.” http://www.nasaspaceflight.com/2013/09/cygnus-cots-graduation-iss-

berthing/

10.

11.

12.

Bhave, B., B. H. Krogh, D. Garlan and B. Schmerl. "View Consistency in Architectures
for Cyber-Physical Systems." In Proceedings of the 2011 IEEE/ACM International
Conference on Cyber-Physical Systems (ICCPS), Chicago, 2011, 151-160. IEEE Computer
Society, 2011.

Binkley, D., M. Hearn, and D. Lawrie. 2011. “Improving identifier informativeness using
part of speech information.” In Proceedings of the 8th Working Conference on Mining
Software Repositories (MSR), Waikiki, 2011, 203-206. ACM Press, 2011.

Bogdan, P. and R. Marculescu. 2011. "Towards a Science of Cyber-Physical Systems
Design." In Proceedings of the 2011 IEEE/ACM International Conference on Cyber-
Physical Systems (ICCPS), Chicago, 2011, 99-108. IEEE Computer Society, 2011.
Bollin, A.. Crossing the Borderline - From Formal to Semi-Formal Specifications. SET
2006: 73-84

Bornholt, J., T. Mytkowicz, and K. S. McKinley. 2015. “Uncertain<T>: Abstractions for
Uncertain Hardware and Software.” IEEE MICRO Top Picks, 35(3):132-143, May-June,
2015.

Bove, A. and P. Dybjer. 2009. “Dependent types at work”. In Language Engineering and
Rigorous Software Development, edited by Ana Bove, Lu & Soares Barbosa, Alberto Pardo,

and Jorge Sousa Pinto. 57-99. Springer, 20009.

218

13.

14.

15.

16.

17.

18.

19.

20.

Brady, E. 2011. “Idris: systems programming meets full dependent types.” In Proceedings
of the 5th ACM workshop on Programming languages meets program verification (PLPV),
Austin, 2011, 43-54. ACM Press, 2011.

Castro, J., M. Kolp, and J. Mylopoulos. 2001. “A requirements-driven development
methodology”. In Advanced Information Systems Engineering, edited by K.R. Dittrich, A.
Geppert, M. Norrie, CAISE 2001. LNCS, vol. 2068, 108-123. Springer, 2001.

Chen, F., G. Rosu, and R. P. Venkatesan. 2003. “Rule-based analysis of dimensional
safety.” In Proceedings of the 14th international conference on Rewriting techniques and
applications (RTA), edited by Robert Nieuwenhuis. 197-207. Springer, 2003.
Christiansen, D. 2013. “Dependent type providers”. In Proceedings of the 9th ACM
workshop on generic programming, 23-34. ACM Press, 2013.

Coq. https://coq.inria.fr/

Craigen, D., Gerhart, S. L., and Ralston, T. 1992. An International Survey of Industrial
Applications of Formal Methods. In Proceedings of the Z User Workshop, pp. 1-5.
Springer, London, 1992.

Delft, V. 1999. “A Java extension with support for dimensions”. In Softw. Pract. Exper.
605-616. John Wiley & Sons, Inc., 1999

Denney, E. and B. Fischer. “Annotation inference for the safety certification of

automatically generated code”. Proceedings of the 21st IEEE International Conference on

219

https://coq.inria.fr/

21.

22.

23.

24,

25.

26.

217.

28.

Automated Software Engineering (ASE ’06), pages 265— 268, Tokyo, Japan, September
2006. IEEE.

Dietl, W., S. Dietzel, M. Ernst, K. Muslu, and T. Schiller. 2011. “Building and using
pluggable type-checkers.” In Proceedings of the 33rd International Conference on Software
Engineering (ICSE). Waikiki, Honolulu, 681-690. ACM Press, 2011.

Ekman, T. and G. Hedin. Pluggable checking and inferencing of non-null types for Java. J.
Object Tech., 6(9):455--475, Oct. 2007.

Fang, C. F., Rob A. Rutenbar, Markus Pischel, and Tsuhan Chen. 2003. Toward efficient
static analysis of finite-precision effects in DSP applications via affine arithmetic modeling.
In Proceedings of the 40th annual Design Automation Conference (DAC '03). ACM, New
York, NY, USA, 496-501.

Figueiredo, D. LH., and J. Stol. Self-validated numerical methods and applications.
Brazilian Mathematics Colloguium monograph, IMPA, Rio de Janeiro, Brazil, July 1997
FlightGear. http://www.flightgear.org/.

Fraser, M. D., Kumar, K., and Vaishnavi, V. K. 1994. Strategies for incorporating formal
specifications in software development. ACM 37, 10 (Oct. 1994), 74-86.

Geoconvertor. https://code.google.com/p/geoconvertor/.

Gay, G., S. Haiduc, A. Marcus, and T. Menzies. 2009. “On the use of relevance feedback
in IR-based concept location.” In Proceedings of the 25th International Conference on

Software Maintenance (ICSM). Edmonton, 2009, 351-360. IEEE Computer Society, 2009.
220

http://www.flightgear.org/

29.

30.

31.

32.

33.

34.

35.

Grant, S., J. R. Cordy, and D. Skillicorn. 2008. “Automated concept location using
independent component analysis.” In Proceedings of the 15th Working Conference on
Reverse Engineering (WCRE), Antwerp, 2008, 138-142. IEEE Computer Society, 2008.
Grein, C., D. Kazakov, and F. Wilson. 2003. “A survey of physical unit handling
techniques in ada”. In Proceedings of the 8th Ada-Europe international conference on
Reliable software technologies (Ada-Europe), edited by Jean-Pierre Rosen and Alfred
Strohmeier. 258-270. Springer, 2003.

Gunter, C. A., E. L. Gunter, M. Jackson, and P. Zave. 2000. “A Reference Model for
Requirements and Specifications.” IEEE Softw. 17, 3, 37-43. IEEE, 2000.

Hangal, S., and M. S. Lam. 2009. “Automatic dimension inference and checking for object-
oriented programs.” In Proceedings of the 31st International Conference on Software
Engineering (ICSE). 155-165. IEEE Computer Society, 20009.

Hill, E., L. Pollock, and K. Vijay-Shanker. 2009. “Automatically capturing source code
context of nl-queries for software maintenance and reuse.” In Proceedings of the 31st
International Conference on Software Engineering (ICSE), 2009, 232-242. IEEE
Computer Society, 2009.

Idani, A., Ledru, Y.: Object oriented concepts identification from formal B specifications.
In: Formal Methods in Industrial Critical Applications, FMICS'04. (2004)

International Geomagnetic Reference Field.

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
221

36.

37.

38.

39.

40.

41.

42.

International System of Units, National Institute of Standards Technology, Washington,
DC.

Jiang, L. and Z. Su. 2006. “Osprey: a practical type system for validating dimensional unit
correctness of C programs.” In Proceedings of the 28th international conference on
Software engineering (ICSE). Shanghai, 262-271. ACM Press, 2006.

Jackson, M. and P. Zave. 1993. "Domain Descriptions," In Proceedings of the Second IEEE
International Symposium on Requirements Engineering. Los Alamitos, CA, 56-64. IEEE,
1993.

Jackson, M. and P. Zave. 1995. “Deriving specifications from requirements: an example.”
In Proceedings of the 17th international conference on Software engineering (ICSE). 15-
24. ACM Press, 1995.

Jackson, M. 2000. “Problem Frames: Analyzing and Structuring Software Development
Problems.” Boston, Addison-Wesley Longman Publishing Co., Inc., 2000.

Johnson, T., B. Stanley and D. Steven. 2015. “Cyber-physical specification mismatch
identification with dynamic analysis”. In Proceedings of the ACM/IEEE Sixth International
Conference on Cyber-Physical Systems (ICCPS). 208-217. ACM press, 2015.

Jung, M., and F. Saglietti. 2005. “Supporting component and architectural re-usage by
detection and tolerance of integration faults.” In Proceedings of the 9th IEEE International
Symposium on High-Assurance Systems Engineering (HASE). 47-55. IEEE Computer

Society, 2005
222

43.

44,

45.

46.

47.

48.

49.

50.

Kelpie flight planner for FlightGear. http://sourceforge.net/projects/fgflightplanner/
Kennedy, A. 1999. “Dimension types.” In Proceedings of the 5th European Symposium on
Programming (ESOP): Lecture Notes in Computer Science volume 788. Springer, 1999.
Kim, S.K., Carrington, D.: Visualization of formal specifications. In: In Proceedings Sixth
Asia Pacific Software Engineering Conference (ASPEC'99), IEEE Computer. Society
Press, Los Alamitos, CA, USA(1999) 102-109

Kofod-Petersen, A., and M. Mikalsen. 2005. “Context: Representation and Reasoning:
Representing and Reasoning about Context in a Mobile Environment”. Special issue of the
Revue d’Intelligence Artificielle on "Applying Context-Management". 2005.
Lamsweerde, V. 2001. “A Goal-Oriented Requirements Engineering: A Guided Tour.” In
Proceedings of the 5th IEEE International Symposium on Requirements Engineering.
Toronto, 2001, 249-263. IEEE Computer Society, 2001.

Leveson, N. G. “Intent Specifications: An Approach to Building Human-Centered
Specifications.” IEEE Transactions on Software Engineering, 26(1):15-35, January 2000.
Leveson, N.G. "Completeness in Formal Specification Language Design for Process
Control Systems”, Formal Methods in Software Practice, Portland, 2000.

Linderman, M. D., Matthew Ho, David L. Dill, Teresa H. Meng, and Garry P. Nolan. 2010.
Towards program optimization through automated analysis of numerical precision. In
Proceedings of the 8th annual IEEE/ACM international symposium on Code generation

and optimization (CGO '10). ACM, New York, NY, USA, 230-237.
223

51.

52.

53.

54.

95.

56.

Marcus, A., V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. 2005. “Static Techniques
for Concept Location in Object-Oriented Code.” In Proceedings of the 13th International
Workshop on Program Comprehension (IWPC). 33-42. IEEE Computer Society, 2005.
Markstrum, S., D. Marino, M. Esquivel, T. Millstein, C. Andreae, and J. Noble. 2010.
“JavaCOP: Declarative pluggable types for java.” In ACM Trans. Program. Lang. Syst. 1-
37. ACM press, 2010.

Mars Climate Orbiter Mishap Investigation Board Phase | Report, 1999. National
Aeronautics and Space Administration, Washington DC, November 10, 1999.

McKinna, J. 2006. “Why dependent types matter”. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 1-1.
ACM Press, 2006.

Meng, N.J., Diane Kelly, and Thomas R. Dean. 2011. Towards the profiling of scientific
software for accuracy. In Proceedings of the 2011 Conference of the Center for Advanced
Studies on Collaborative Research (CASCON '11), Marin Litoiu, Eleni Stroulia, and
Stephen MacKay (Eds.). IBM Corp., Riverton, NJ, USA, 257-271.

Milanova, A. and W. Huang. 2012. “Inference and checking of context-sensitive pluggable
types.” In Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering (FSE). Article 26, 4 pages. ACM press, 2012

224

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Miller, S. P., and A. C. Tribble. 2001. “Extending the four-variable model to bridge the
system-software gap.” In Proceedings of the 20th digital Avionics System Conferences.
Daytona Beach, 14-18. IEEE Computer Society, 2001.

OpenMap. http://openmap-java.org/

OpenMap developer guide. http://openmap.bbn.com/developer_hints.html

OpenMap in Github. https://github.com/openmap-java/openmap

OpenMap in Twitter. https://twitter.com/openmap

OpenMap tutorial. https://www.javacodegeeks.com/2015/10/openmap-tutorial-part-1.html
Ou, X., G. Tan, Y. Mandelbaum, and D. Walker. 2004. “Dynamic typing with dependent
types.” In Exploring new frontiers of theoretical informatics. 437-450. Springer, 2004.
Ozcan, M. B., P. W. Parry, I. C. Morrey, and Jawed I. A. Siddigi. 1998. Requirements
Validation based on the Visualization of Executable Formal Specifications. In Proceedings
of the 22nd International Computer Software and Applications Conference (COMPSAC
'98). IEEE Computer Society, Washington, DC, USA, 381-386.

Parnas, D. L. and L. Madey. 1995. “Functional documents for computer systems.” In Sci.
Comput. Program. 41-61. Amsterdam: Elsevier North-Holland, Inc., 1995.

Papi, M., M. Ali, C. T. Luis, J. H. Perkins, and M. D. Ernst. 2008. “Practical pluggable
types for Java.” In Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), edited by B. G. Ryder and A. Zeller. 201-212.

ACM Press, 2008.
225

http://openmap.bbn.com/developer_hints.html
https://github.com/openmap-java/openmap

67.

68.

69.

70.

71.

72.

Perttunen, M., J. Riekki, and O. Lassila. 2009. “Context representation and reasoning in
pervasive computing: a review”. In International Journal of Multimedia and Ubiquitous
Engineering. Vol. 4, No. 4, October, 1-28. 20009.

Petty, G. 2001. “Automated computation and consistency checking of physical dimensions
and units in scientific programs.” In Softw. Pract. Exper. 1067-1076. New York: John
Wiley & Sons, Inc., 2001.

Poshyvanyk, D. and A. Marcus. 2007. “Combining formal concept analysis with
information retrieval for concept location in source code.” In Proceedings of the 15th IEEE
International Conference on Program Comprehension (ICPC), Banff, Alberta, 2007, 37-48.
IEEE Computer Society, 2007.

Rajlich, V., and N. Wilde. 2002. “The Role of Concepts in Program Comprehension.” In
Proceedings of the 10th International Workshop on Program Comprehension (IWPC). 271-
278. IEEE Computer Society, 2002.

Ratiu, D. and F. Deissenboeck. 2007. “From Reality to Programs and (Not Quite) Back
Again.” In Proceedings of the 15th IEEE International Conference on Program
Comprehension (ICPC). Banff, Alberta, 91-102. IEEE Computer Society, 2007.

Ratiu, D., M. Feilkas, and J. Jurjens. 2008. “Extracting Domain Ontologies from Domain
Specific APIs.” In Proceedings of the 2008 12th European Conference on Software
Maintenance and Reengineering (CSMR). Athens, 203-212. IEEE Computer Society,

2008.
226

73.

74.

75.

76.

77.

78.

79.

Razali, R., Snook, C. F., Poppleton, M. R., Garratt, P. W. and Walters, R. J. Experimental
Comparison of the Comprehensibility of a UML-based Formal Specification versus a
Textual One. In: 11th International Conference on Evaluation and Assessment in Software
Engineering (EASE'07), 2-3 April 2007, Keele, Staffordshire, UK. pp. 1-11.
Ruiz-Casado, M., E. Alfonseca, and P. Castells. 2005. “Automatic extraction of semantic
relationships for wordnet by means of pattern learning from Wikipedia.” In Proceedings of
the 10th international conference on Natural Language Processing and Information
Systems (NLDB), edited by A. Montoyo, R. Munoz, and E. Métais. 67-79. Springer, 2005.
Snook, C., M. Butler. 2006. UML-B: Formal modeling and design aided by UML, ACM
Transactions on Software Engineering and Methodology (TOSEM), v.15 n.1, p.92-122,
January 2006.

Syme. D., K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu, T. Liu, B. McNamara, D.
Quirk, M. Taveggia, W. Chae, U. Matsveyeu, and T. Petricek. 2012. “Strongly-typed
language support for internet-scale information sources.” Technical Report MSR-TR-
2012-101, Microsoft Research, September 2012.

T. Taylor, B. Stanley and D. Steven. 2015. “Cyber-physical specification mismatch
identification with dynamic analysis”. In Proceedings of the ACM/IEEE Sixth International
Conference on Cyber-Physical Systems (ICCPS). 208-217. ACM press, 2015.

Wordnet. http://wordnet.princeton.edu

World Magnetic Model. http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
227

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

80.

81.

82.

83.

84.

85.

Wu, B., Jianwen Zhu, and F. N. Najm. 2004. Dynamic range estimation for nonlinear
systems. InProceedings of the 2004 IEEE/ACM International conference on Computer-
aided design (ICCAD '04). IEEE Computer Society, Washington, DC, USA, 660-667.
Whitaker, R., W. Thompson, J. Berger, B. Fischhof, M. Goodchild, M. Hegarty, C.
Jermaine, K. McKinley, A. Pang, J. Wendelberger. 2015. “Quantification, Communication,
and Interpretation of Uncertainty in Simulation and Data Science”. CRA Computing
Computing Community Consortuim (CCC), pp. 1-22, September, 2015.

Wyk, E. and Y. Mali. 2007. “Adding Dimension Analysis to Java as a Composable
Language Extension.” In Generative and Transformational Techniques in Software
Engineering I1. Lecture Notes In Computer Science, Vol. 5235. 442-456. Springer, 2007.
Xiang, J., J. Knight, and K. Sullivan. 2015. “Real-world Types and Their Application”. In
Proceedings of the 34th International Conference on Computer Safety, Reliability and
Security (SAFECOMP). Delft, 2015, 471-484. Springer, 2015.

Xiang, J., J. Knight and K. Sullivan, 2016. "Synthesis of Logic Interpretations,” In
Proceedings of the 17th International Symposium on High Assurance Systems Engineering
(HASE), Orlando, FL, 2016, pp. 114-121.

Yang, L., H. Yang, and W. Chu. 2000. “Generating linkage between source code and
evolvable domain knowledge for the ease of software evolution.” In Proceedings
International Symposium on Principles of Software Evolution, Kanazawa, 2000. 196-205.

IEEE Computer Society, 2000
228

86. Yin, R. K. 2009. Case study research: Design and methods. Thousand Oaks, Calif: Sage
Publications.

87. Eclipse Plug-in Development. http://www.vogella.com/tutorials/EclipsePlugin/article.html

88. Zimmerman, M.K., K. Lundqvist, N.G. Leveson, “Investigating the Readability of Formal
Requirements Specification languages”, International Conference on Software

Engineering, May 2002.

229

http://www.vogella.com/tutorials/EclipsePlugin/article.html

	1. Introduction
	1.1 Problem Overview: Uninterpreted Logic
	1.1.1 Uninterpreted Logic
	1.1.2 Consequences of Uninterpreted Logic
	1.1.3 Implications for Research

	1.2 The Target Challenge: An Explicit Interpretation
	1.2.1 Real-World Semantic Information
	1.2.2 Relationships between Real-World Entities and Logic
	1.2.3 Real-World Constraints

	1.3 Solution and Preview of Contributions
	1.3.1 Goals and Approach of Interpreted Formalism
	1.3.2 Interpreted Formalism
	1.3.3 Thesis Statement
	1.3.4 Preview of Contributions

	1.4 Organization of the Work

	2. Logic Interpretation
	2.1 The Concept of Logic Interpretation
	2.2 Implicit Interpretation
	2.3 Explicit Interpretation
	2.4 Advantages of an Explicit Interpretation

	3. Interpreted Formalism
	3.1 Overview of Interpreted Formalism
	3.2 A New Definition of A Software System
	3.2.1 A General Form of Software Systems
	3.2.2 A New Form of Software Systems

	3.3 The Structure of Interpreted Formalism
	3.3.1 A Real-World Specification
	Specifications of Real-World Entities
	Real-World Constraints and Invariants

	3.3.2 A Relationship Specification
	A Set of Mapping Links
	An Explanation of the Relationship

	3.4 An Interpreted Formalism Example
	3.4.1 Logic component
	3.4.2 Interpretation
	Real-world specification
	A relationship specification

	4. Real-World Type: An Implementation Of The Interpreted Formalism
	4.1 Real-World Types
	4.1.1 The Concept of Real-World Types
	4.1.2 The Structure of Real-World Types
	Specification
	Representation
	Relationship

	4.1.3 Real-World Type Example

	4.2 Real-World Type Rules
	4.3 Real-World Type System
	4.3.1 Real-World Type Binding
	4.3.2 Real-World Type System

	4.4 Real-World Types and Program Structures.

	5. Establishing Properties Using Interpreted Formalism
	5.1 Properties Being Established
	5.2 Establish Properties
	5.2.1 Real-World Constraint Checking
	5.2.2 Range and Reasonableness Analysis
	5.2.3 Assertion Generation For Run-Time Assurance
	5.2.4 Targeted Inspection

	6. Developing Interpreted Formalisms
	6.1 Sources of Development
	6.1.1 Existing Context Documentation
	6.1.2 Existing Real-World Type Systems
	6.1.3 Existing Software Application Materials

	6.2 Development of Real-World Type Systems from Application Materials
	6.2.1 Synthesis of Interpretations
	6.2.2 Synthesis of Real-World Types
	Type Synthesis Process
	Type Synthesis Example

	6.2.3 Synthesis of Real-World Type Bindings
	Binding Synthesis Concepts
	Binding Synthesis Process

	6.2.4 Synthesis of Real-World Type Rules

	7. Prototype Implementation
	7.1 Design of the Java Prototype
	7.1.1 Use of the Prototype
	Analysis Techniques
	developing an interpreted formalism
	Representation of an Interpreted formalism

	7.1.2 Typed Program Elements
	7.1.3 Type Conversion
	7.1.4 Possible Erroneous Statements

	7.2 Java Prototype User Interfaces
	7.2.1 Popup Menu: CM Type Checker
	7.2.2 Popup Menu: CM Type Facilities
	7.2.3 Eclipse View: CM Type View
	7.2.4 Eclipse View: CM Type Rules View
	7.2.5 Concept Explication View
	7.2.6 Diagnose View

	8. Evaluation Overview
	8.1 Introduction
	8.2 The Case Study Subjects
	8.3 Evaluated Properties
	8.3.1 Feasibility
	Approach
	Assessment
	Data collected

	8.3.2 Error Detection Capability
	Approach
	Assessment
	Data Collected

	8.3.3 Effort Level
	Approach
	Assessment
	Data Collected

	8.3.4 Scalability
	Approach
	Assessment
	Data Collected

	9. Case Study: Kelpie flight planner
	9.1 System of Case Study
	9.1.1 Basic Information
	9.1.2 Important Real-World Semantics
	Dimensional and Units Attributes
	Velocity Surface Attribute
	Earth Model Attribute

	9.2 Data Collected and Assessment
	9.2.1 Feasibility
	Data Collected
	Assessment

	9.2.2 Error Detection Capability
	Data Collected
	Analysis of Real Errors
	Assessment

	9.2.3 Effort Level

	10. Case study: OpenMap
	10.1 System of Case Study
	10.1.1 Basic Information
	10.1.2 Important Real-World Semantics
	Dimensional and Units
	Geographic and geocentric latitude
	Reference Level of Elevation and Altitude

	10.2 Data Collected and Assessment
	10.2.1 Feasibility
	Data Collected
	Assessment

	10.2.2 Error Detection Capability
	Data Collected
	Analysis of Real Errors
	Assessment

	10.2.3 Effort Level
	Data Collected
	Assessment

	10.2.4 Scalability
	Data Collected
	Assessment

	11. Case Study: Pragmatic Application
	11.1 Phase #1: Familiarity.
	Goal of the phase
	Strategy and results
	Conclusion

	11.2 Phase #2: Exploration
	Goal of the phase
	Strategy and results
	Conclusion

	11.3 Phase #3: Relevance
	Goal of the phase
	Strategy and results
	Conclusion

	11.4 Phase #4: Full Utilization
	Goal of the phase
	Strategy and results
	Conclusion

	11.5 Observations

	12. Case Study: The Synthesis Framework
	12.1 Introduction
	12.2 Synthesis of Type Candidates
	12.2.1 Analysis

	12.3 Synthesis Of Real-World Type Bindings
	12.4 Synthesis Of Real-World Type Rules
	12.5 Pragmatic Application With Synthesis
	12.6 Effort Level Assessment

	13. Related Work
	13.1 Model the Relationships between the Real World and the Machine World
	13.1.1 Four-Variable Model
	13.1.2 Extended Four-Variable Model
	13.1.3 Problem Frame and Reference Model
	13.1.4 Cyber-Physical System

	13.2 Type System
	13.2.1 Conventional Type Systems
	13.2.2 Enhanced Type Checker

	13.3 Check Real-World Constraints
	13.4 Improve Logic Understanding And Maintenance
	13.4.1 Integration of Semi-Formal and Formal Notations
	13.4.2 Visualization of Formalism
	13.4.3 Ontology
	13.4.4 Intent Specification

	13.5 Synthesis Mechanisms
	13.5.1 Type Provider
	13.5.2 Typing Synthesis
	13.5.3 Concept Location
	13.5.4 Parts Of Speech

	13.6 Context Representation and Reasoning
	13.7 Uncertainty of Hardware and Software

	14. Conclusion
	14.1 Overview
	14.2 Contributions
	14.3 Limitations
	14.4 Future Work

	Bibliography

