
Formal Robustness for Cyber-Physical Systems
under Timed Attacks

Jian Xiang
UNC Charlotte

Charlotte, NC 28223, US
jian.xiang@charlotte.edu

Simone Tini
University of Insubria
Como, 22100, Italy

simone.tini@uninsubria.it

Ruggero Lanotte
University of Insubria
Como, 22100, Italy

ruggero.lanotte@uninsubria.it

Massimo Merro
University of Verona

Verona, 37134, Italy
massimo.merro@univr.it

Abstract—Cyber-physical systems are increasingly deployed
in safety-critical applications, making their robustness under
adversarial conditions a critical concern. Among the diverse
range of threats, timed attacks, i.e., attacks triggered at
particular timing, pose a unique challenge due to their ability
to disrupt system behaviors in subtle and complex ways. In this
paper, we propose a formal framework for quantitative analysis
of the robustness of system’s safety against timed attacks on
cyber-physical systems modeled via the formalism of hybrid
programs and differential dynamic logic. We introduce a series
of timing related properties to characterize the robustness of
safety against timed attacks, and develop a system of reasoning
techniques, with a focus on the timing of dynamics, to establish
these properties. We showcase the reasoning techniques with a
case study on a water tank system with non-trivial dynamics.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are complex systems that
integrate controllers and physical dynamics, playing a crucial
role in many safety-critical applications, such as autonomous
vehicles, power grids, and industrial automation.

The hybrid nature of CPSs exposes them to a wide range
of cyber-physical attacks [1], [2], i.e., security breaches in
cyberspace that adversely affect the physical process of the
CPS under attack. In particular, timed attacks [3] leverage
precise timing to induce subtle but significant disruptions,
such as destabilizing control loops, misaligning schedules,
or triggering unsafe behaviors. For example, timed GPS
spoofing can mislead autonomous vehicles at highway merge,
and coordinated load manipulation can destabilize power
grids. The challenge is further amplified by the difficulty
of detecting timed attacks, as their subtle and unpredictable
nature allows them to mimic legitimate timing behaviors,
often evading standard intrusion detection systems (IDSs).

While great progress has been made in verifying CPS
safety properties using formal methods [4], [5], [6], existing
approaches often focus on binary safety guarantees [7].
However, we believe that quantitative safety [8], [6], [9] is
much more interesting in the setting of CPSs because it allows
system engineers to evaluate the safety margins under timed
attacks, such as how much the duration of a timed attack can
affect a system’s safety, how long the system can sustain the
impact of timed attack without failing, and how much the
system can tolerate unsafety if it eventually recovers to safety.

In this paper, we investigate the impact on the safety of
CPSs when exposed to timed physics-based attacks tampering
with sensor measurements and/or actuator commands. We
introduce a formal framework that integrates quantitative
safety notions with the ability to reason about the impact
a timed attack has on a system’s safety. Our threat model
assumes that the timed attacks target the controller, and system
engineers have detected and classified the timed attacks. Upon
detection they try to estimate robustness, impact, and tolerance
in the compromised system. We first introduce a notion of
quantitative safety that incorporates timing, based on the
minimum distance to the unsafe region from a system’s
reachable states within a time duration. Using this notion,
we define three timed properties: (1) timed robustness, which
quantifies how much a system’s safety would be impacted
by a timed attack, if it stays safe; (2) timed impact, which
quantifies how unsafe the system would become; and (3)
timed tolerance, which quantifies how much the system can
tolerate unsafety without violating a system threshold.

To establish these timed properties, our approach reduces
their analyses to reasoning about the relationship between
the compromised system and the genuine system. Such a
relational reasoning offers a significant advantage in analyzing
the effectiveness of timed attacks: it avoids the need for a
complete safety analysis of the compromised system, which
may require an exhaustive exploration of its behaviors.
Instead, relational reasoning allows us to focus on (1) the
differences caused by the attacks and (2) the duration when
the attacks make impact. Such an approach can enable more
efficient analysis, which is particularly useful considering that
CPSs often have large state space.

Inspired by the notion of behavioral distance [10], we
formalize such a relationship as timed simulation distance: a
forall-exists relational property that intuitively quantifies the
difference in the behavior of the compromised system and the
genuine system in terms of safety, in a specific time interval.
In particular, our timed distance provides lower bounds on
the safety of the compromised system w.r.t. the genuine one.

In the paper, we work within the formalism of hybrid
programs and differential dynamic logic (dL) [11], [12], [13].
Hybrid programs are a formalism for modeling systems that
have both continuous and discrete behaviors. They can express
continuous evolution (as differential equations) as well as

discrete transitions. dL is the logic of hybrid programs, which
is used to specify and verify safety properties. The formalism
models hybrid systems with continuous and discrete dynamics
in a unified formal language, thus providing a distinct ad-
vantage over other formalisms for relational reasoning. It can
directly encode relational properties, providing more intuitive
support for relational reasoning. Moreover, programming lan-
guage based techniques for relational reasoning can be adapted
to the setting of dL.

Using this advantage, we encode our timed simulation
distances as forall-exists relational formulas in dL, inspired
by the techniques of self-composition [14], [15]. Existing
proof rules and axioms developed for dL can help reason
with this encoding, but they lack support for timing and
relational reasoning, especially, for dynamics. To address
the challenges, we propose a framework that extends dL’s
capabilities to reason about relational properties and timing.

The main contributions of this paper are the following:
• A clean threat model of timed attacks in the setting of the

differential dynamic logic (Section III).
• Quantitative timed notions of safety, robustness, attack

impact, and attack tolerance for cyber-physical systems
under timed attack (Section IV).

• To reason about above timed properties, we develop ad-
hoc timed simulation distances which can be encoded
and proven via untimed simulation distances, which are
essentially forall-exists properties (Section V).

• A sound proof system for reasoning about general forall-
exists properties (Section VI-A), and proof techniques to
reason with the timing of dynamics (Section VI-B).

• A non-trivial case study, modeling a water tank system,
to show the usefulness of the proposed proof techniques
to reason with CPSs under timed attacks (Section VII).

We introduce preliminaries in Section II. Section VIII
discusses related work, and Section IX concludes.

II. PRELIMINARIES

A. Hybrid Programs and Differential Dynamic Logic

Hybrid programs [12], [13] are a formalism for modeling
systems that have continuous and discrete behaviors. Fig. 1
gives the syntax and semantics for hybrid programs. The
semantics of a program P is expressed as a transition relation
JP K between states. For a set of variables V, a state is a map
ω : V 7→ R assigning a real value to each variable. The set of
all states is denoted by STA. Thus, when (ω, ν) ∈ JP K then
there is an execution of P that starts in ω and ends in ν.

Variables are real-valued and can be deterministically as-
signed (x := θ, where θ is a real-valued term) or nondetermin-
istically assigned (x := ∗). A hybrid program x′ = θ&ϕ ex-
presses the continuous evolution of variables: given the current
value of variable x, the system follows the differential equation
x′ = θ for some (nondeterministically chosen) amount of time
so long as the formula ϕ, the evolution domain constraint,
holds for all of that time. Note that x can be a vector of

Syntax
θ, δ ::= x | c | θ ⊕ δ
P , Q ::= x := θ | x := ∗ | x′ = θ&ϕ | ?ϕ | P ;Q | P ∪Q | P ∗

ϕ, ψ ::= ⊤ | θ ∼ δ | ¬ϕ | ϕ ∧ ψ | ∀x. ϕ | [P]ϕ
Term semantics

ωJxK = ω(x)
ωJcK = c

ωJθ ⊕ δK = ωJθK ⊕ ωJδK where ⊕ denotes arithmetics
Program semantics

Jx := θK = {(ω, ν)| ν(x) = ωJθK and for all other
variables y ̸= x, ν(y) = ω(y)}

Jx := ∗K = {(ω, ν)| ν(y) = ω(y) for all variables y ̸= x}
Jx′ = θ&ϕK = {(ω, ν)| exists solution φ : [0, r] 7→ STA of

x′ = θ with φ(0) = ω and φ(r) = ν,
and φ(t) ∈ JϕK for all t ∈ [0, r]}

J?ϕK = {(ω, ω)| ω ∈ JϕK}
JP ;QK = {(ω, ν)| ∃µ, (ω, µ) ∈ JP K and (µ, ν) ∈ JQK}

JP ∪QK = JP K ∪ JQK
JP ∗K = JP K∗ the transitive, reflexive closure of JP K

Formula semantics
J⊤K = STA

Jθ ∼ δK = { ω | ωJθK ∼ ωJδK }, ∼ denotes comparisons
J¬ϕK = STA \ JϕK

Jϕ ∧ ψK = JϕK ∩ JψK
J∀x. ϕK = J[x := ∗]ϕK
J[P]ϕK = { ω | ∀ν if (ω, ν) ∈ JP K then ν ∈ JϕK}

Fig. 1. Syntax and semantics of hybrid programs and dL formulas

variables and then θ is a vector of terms of the same dimension.
Hybrid programs also include the operations of Kleene alge-
bra with tests [16]: testing formulas, sequential composition,
nondeterministic choice, and nondeterministic repetition.

Differential dynamic logic (dL) [11], [12], [13] is the dy-
namic logic of hybrid programs. Fig. 1 also gives the semantics
for dL formulas: JϕK denotes the set of states satisfying
formula ϕ. In addition to the standard logical connectives of
first-order logic, dL includes primitive propositions that allow
for comparisons of real-valued terms (which may include
derivatives) and the modality of necessity [P]ϕ, which holds
in a state if and only if after any possible execution of hybrid
program P , formula ϕ holds. The modality of necessity can be
used to encode the modality of existence, i.e., ⟨P ⟩ϕ = ¬[P]¬ϕ.

The common (Boolean) version of Safety properties of a
system are often defined as follows:
Definition 1 (Safety [7]). A hybrid program P is safe for
a postcondition ϕpost, assuming a precondition ϕpre, written
SAFE(P , ϕpre, ϕpost), if the formula ϕpre→ [P]ϕpost holds.

When modeling CPSs in dL, in order to explicitly represent
the cyber component that controls a physical plant, the hybrid
program P often has the form (ctrl; plant)∗, where ctrl
models logical actions of the controller and does not contain
continuous terms; and plant models the evolution of the
physical environment and has the form of x′ = θ&ϕ. That
is, a CPS is modeled as unbounded repetitions of a controller
actions followed by an update to the physical environment.

For example, consider a simple cooled engine system that

2

operates in an environment where the temperature increases
at a rate of 1 degree per minute, shown in Fig. 2. Let tempp
be the actual physical temperature of the engine, expressed in
degrees. The sensed temperature is modeled by introducing a
different variable, temps, and the sensor reading is expressed
via the assignment temps := tempp (here, for simplicity,
we assume error-free sensor reading). Let tg be the global
clock that denotes time passing and tl the local clock of the
controller that is initialized at the beginning of each scan cycle.

The plant, of the form x′ = θ&ϕ, describes how the differ-
ential equation system x′ = θ evolve for an arbitrary real du-
ration within the region described by formula ϕ. In particular,
temperature changes according to delta (i.e., tempp′ = delta)
and (global and local) time passes constantly (i.e., tg ′ = 1 and
tl
′ = 1). The evolution domain constraint ϕ establishes the

differential equations evolve within the time interval tl ≤ 1 (at
most 1 minute) and if tempp is nonnegative (i.e. tempp ≥ 0).
In practice, the requirement tl ≤ 1 fixes an upper bound to the
closed-loop latency, i.e., the execution time for ctrl; plant.

The hybrid program ctrl models the system controller. If the
sensed temperature is above 100 degrees, the system activates
cooling and the temperature drops at a rate of 0.5 degrees per
minute (i.e., delta := −0.5). The controller does not activate
cooling under other temperatures. Then the temperature would
grow at the rate of 1 degree per minute (i.e., delta := 1).

Thus, according to Def. 1, when assuming the precondition
of a temperature of 100 degrees, i.e. ϕpre, we want to ensure
the temperature stays at no greater than 105 degrees, i.e., ϕpost.

B. Distance Metrics

To conduct quantitative analysis, we define a notion of
distance between states, focusing on a set H ⊆ V of variables.
Intuitively, variables in H are the ones that are relevant
to the safety of the systems. And thus computing distance
over these variables gives us the quantitative distance of
interest. We use the Euclidean metric defined by ρH(ω, ν) =√∑

x∈H (ω(x)− ν(x))
2.

We will write ρ(ω, ν) for ρH(ω, ν) when H = V.
For a state ω and a real ϵ > 0, the ball of ray ϵ centered in

ω is the set of states BH(ω, ϵ) = {ν | ρH(ω, ν) ≤ ϵ}.
We adopt existing notions [17], [18] to specify the distance

between a state and a set of states:
• The distance between a state ω and a set of states S ⊆ STA

is the shortest distance between ω and states in S, that is,
distH(ω,S) = inf{ρH(ω, ν) | ν ∈ S}

• The depth of ω in S ⊆ STA is the shortest distance
between ω and the boundary of S, that is,

depthH(ω,S) = inf{ρH(ω, ν) | ν ∈ (STA \ S)}
• The signed distance between ω and a set of states
S ⊆ STA is defined as follows:

DistH(ω,S) =

{
depthH(ω,S), if ω ∈ S
−distH(ω,S), if ω ̸∈ S

Note that in the first case the signed distance is a positive
real number, while in the second case the signed distance is

ϕpre ≡ tempp = 100

ϕpost ≡ tempp ≤ 105

ctrl ≡ tl := 0 ; temps := tempp;

(?temps > 100; delta := −0.5)

∪ (?temps ≤ 100; delta := 1)

plant ≡ tempp
′ = delta, tl

′ = 1, tg
′ = 1&(tempp ≥ 0 ∧ tl ≤ 1)

Fig. 2. dL model of a simple cooled engine system

negative. Thus, DistH(ω,S) > 0 implies that BH(ω, ϵ) ⊆
S for all ϵ < Dist(ω,S), whereas DistH(ω,S) < 0 im-
plies that BH(ω, ϵ) ⊆ (STA\S) for all ϵ < −DistH(ω,S).
DistH(ω,S) = 0 is not very informative.

Here, we assume inf ∅ = ∞ and inf R = −∞, and we let
operator inf in R∪{∞,−∞}, thus every set has an infimum.

III. A THREAT MODEL FOR TIMED ATTACKS

In this section, we focus on timed physics-based attacks [1],
[2] capable of: (i) modifying/dropping sensor readings coming
from the plant; (ii) forging/dropping actuator commands
addressed to the plant. These attacks are implemented
through malware injected in the controllers of CPSs, with
the following limitations: Any alterations of sensor signals
and/or actuator commands at network level, or within the
physical devices, are not represented. Such attacks can be
easily simulated by writing malware that can modify sensor
measurements and/or actuator commands within the controller.

Thus, the attacker objectives can be resumed in affecting
the runtime evolution of the controlled physical process.

The focus of the paper is on timed attacks because timing
is a critical issue when attacking systems with a physical
state that changes continuously over time. In fact, some states
may be more vulnerable to attacks than others [19], [20].
Furthermore, not only the timing of the attack, but also the
duration of the attack is an important parameter to be taken
into account in order to achieve a successful attack [20],
[2]. For example, the duration of an attack should always be
determined to ensure stealthy attacks, i.e., attacks that cannot
be detected by intrusion detection systems (IDS).

In general, a clean way to model a physics-based attack on
a CPS is as a function that, given a genuine system returns
a compromised one, where the corruption affects the logical
component, and in particular the controller, rather than the
plant, which is usually harder to be reached by the attacker.
Definition 2 (Modeling attacks). An attack ATT is a func-
tion that transforms a program P ≡ ctrl; plant into a
new compromised program ATT(P) ≡ (ATT(ctrl); plant).
Moreover, for P ∗ ≡ (ctrl; plant)∗ we define ATT(P ∗) ≡
(ATT(ctrl); plant)∗.

In the following, we use the example CPS described
in Fig. 2 to show a way to model timed attacks in dL.
The so-called scheduled attacks are attacks scheduled at a
precise point in time and for a precise duration. Scheduled
attacks may have a recurrent malicious pattern. This is the
case of periodic attacks which are slightly more subtle as

3

ctrlcomp ≡ tl := 0 ; MALWARE ; (?temps ≤ 100; delta := 1)

∪(?temps > 100; delta := −0.5)

MALWARE ≡ ?TRIGGER ; PLDX ∪ ?¬TRIGGER ; temps := tempp

TRIGGER ≡ START ≤ tg ≤ START + DURATION

PLDDoS ≡ ?⊤
PLDIC ≡ temps := ∗ ;

?(temps≥tempp−OFFSET ∧ temps≤tempp)
PLDIV ≡ o := o+ inc ;

(?o > OFFSET ; PLDIC)

∪ (?o ≤ OFFSET ; temps := ∗ ;
?(temps ≥ tempp − o ∧ temps ≤ tempp))

Fig. 3. Scheduled sensor attacks

they alternate periods of malicious activities (during the
so-called attack window) with periods in which the attack is
harmless (during the sleep window). This switching between
malicious and benign activities, if well-calibrated, may
make the intrusion detection activity quite difficult, inducing
system engineers in suspecting their IDSs are suffering false
positives, possibly due to too tight thresholds.

Here, by no means, we pretend to be exhaustive with our
templates: we may design dozens of different variations to
derive smarter attacks. However, we argue that our attacks are
general enough for testing and verifying the timed notions of
safety and robustness which we will define in the next section.

A. Scheduled Attacks

1) Sensor attacks: In this section, we model both DoS and
(bounded) integrity attacks on sensor measurements in dL. In
order to help the reader’s intuition, we implement these attacks
in the simple cooled engine system modeled in Fig. 2, where
the only measurement is the temperature of the system.

We present the template of scheduled sensor attacks in
Fig. 3. Here, ctrlcomp denotes the controller ctrl (shown in
Fig. 2), compromised by a malware that is triggered at a spe-
cific time START and remains active for a duration DURATION.
In our model, the malware payload can be instantiated with
three different payloads: PLDDoS, PLDIC and PLDIV. The
first one implements denial of service of the measurement
readings. Thus, during the attack, the controller will not get
updated measurements. The second payload inserts a bounded
subtractive offset in the measurements (additive offsets can be
modeled in a similar manner); more precisely, when the mal-
ware is triggered, the controller will get measurements reduced
by an arbitrary offset that is bounded by a constant OFFSET,
determining the impact of the attack. Notice that when the
attack starts, the measurement will exhibit a discontinuity that
might be detected by an anomaly-based intrusion detection
system. The third payload PLDIV implements a more clever,
and possibly stealthier, integrity attack. Here, the bound of the
subtractive offset is not constant, but it is gradually increased
until the desired maximum offset OFFSET is reached.

2) Actuator attacks: In Fig. 4, we adapt two forms of
attacks to the simple cooled engine system modeled in Fig. 2.

ctrlcomp ≡ tl := 0 ; temps := tempp ;

(?temps > 100; MALWAREON)

∪ (?temps ≤ 100; MALWAREOFF)

MALWAREON ≡ ?TRIGGER ; PLDX ∪ ?¬TRIGGER ; delta := −0.5

MALWAREOFF ≡ ?TRIGGER ; PLDDoS ∪ ?¬TRIGGER ; delta := 1

TRIGGER ≡ START ≤ tg ≤ START + DURATION

PLDDoS ≡ ?⊤
PLDIA ≡ delta := ∗ ; ?(delta≥−0.5+OFFSET ∧ delta ≤ 1)

Fig. 4. Scheduled actuator attacks

Here, there is only one actuator used to activate/deactivate
the cooling system. Thus, the malware may be interested
in interfering with the activation of the cooling system (via
MALWAREON) or its deactivation (via MALWAREOFF). In the
latter case, our malware can only do a denial of service on the
deactivation, dropping the command sent by the controller to
deactivate the cooling system. As a consequence, the cooling
system remains active, keeping the temperature in a drop. In
the former case, the malware payload can be instantiated with
two different codes: PLDDoS and PLDIA. The first implements
denial of service on the command to activate the cooling
system. As a consequence, the cooling will not be activated
and the temperature will continue to grow. The second payload
inserts a bounded additive offset in the actuator command
that specifies the intensity of cooling during the attack; more
precisely, when malware is triggered, cooling is less effective
than usual in lowering the temperature by an arbitrary offset
that is bounded by a constant OFFSET, determining the impact
of the attack (the code to add a subtractive offset is similar).

B. Periodic Attacks

1) Sensor attacks: The template of periodic sensor attacks
in Fig. 5 is a refinement of that one seen for scheduled sensor
attacks in Fig. 3. Here, again, the malware is triggered at a spe-
cific time START and remains active for a duration DURATION.
In this time window, the malware will alternate active win-
dows/phases (lasting AW time units) and sleep windows/phases
(lasting SW time units). As as example, we may consider both
DoS and bounded integrity attacks given in Fig. 3 (PLDDoS

and PLDIC). In both kinds of attack, during the attack window
of the attack, the controller will not get correct measurements,
while the system works correctly during the sleeping phase.

2) Actuator attacks: Similarly to periodic sensor attacks,
periodic actuator attacks can be expressed as a refinement of
the scheduled actuator attacks given in Fig. 4. This can be
easily done by rewriting the malicious payloads in such a way
to be periodic, as we did for periodic sensor attacks (Fig. 5.).

IV. SAFETY, ROBUSTNESS, ATTACK IMPACT AND
TOLERANCE

A. Extend dL with Timed Structure

Timed semantics To help define a timed notion of safety,
we extend dL with another syntactic structure of formulas,

4

MALWARE ≡ ?TRIGGER ; PLD

∪ ?¬TRIGGER ; temps := tempp

TRIGGER ≡ START ≤ tg ≤ START + DURATION

PLD ≡ ?ACTIVE ; PLDX ; ACTIVE PHASE

∪ ?¬ACTIVE ; temps := tempp ; SLEEP PHASE

ACTIVE PHASE ≡ ?(tg − tON < AW)

∪ ?(tg − tON ≥ AW) ; ACTIVE := false ; tOFF := tg

SLEEP PHASE ≡ ?(tg − tOFF < SW)

∪ ?(tg − tOFF ≥ SW) ; ACTIVE := true ; tON := tg

Fig. 5. Periodic sensor attacks

denoted ϕ⟨P ⟩[Tl,Tu], which intuitively represents the timed
strongest postcondition after the execution of P , in the time
interval [Tl, Tu], in a state satisfying the precondition ϕ. Intu-
itively, we assume that our hybrid programs P have a global
clock tg representing physical time. Thus, a common form
of P is (ctrl; plant)∗ where plant ≡ (x′ = θ, tg

′ = 1)&ψ.
Here, x can be a vector of variables, and then θ is a vector of
terms of the same dimension. An obvious consequence of our
representation of time in hybrid programs is that the safety
property ϕpre → [P]ϕpost requires that ϕpre → tg = 0, where
tg = 0 sets the initial time of the system to 0.

Well-formedness: The formula ϕ⟨P ⟩[Tl,Tu] is well-formed
if (1) tg ∈ VAR(P), (2) tg ′ = 1 is the only program that
modifies tg , and (3) Tl ≤ Tu.

For the rest of this paper, we focus on well-formed timed
strongest postconditions unless otherwise specified. Its formal
semantics is the following:
Jϕ⟨P ⟩[Tl,Tu]K={ν | ∃ω ∈ JϕK, (ω, ν) ∈ JP K ∧ Tl ≤ ν(tg) ≤ Tu} .

We will write ϕ⟨P ⟩ as an abbreviation for ϕ⟨P ⟩[0,∞].

B. Timed Quantitative Safety

In the following, we provide a timed quantitative generaliza-
tion of the safety property (Definition 1) of the system under
investigation in a specific time interval [Tl, Tu]. In particular,
for Tl = 0, the following definition provides a sort of “look-
ahead” on the safety of the system in the next Tu time instants.
Definition 3 (Timed quantitative safety). Given two time
points Tl, Tu ∈ R>0, a real u ∈ R, and formulas ϕpre and
ϕpost, with H ≡ VAR(ϕpost), we will say that a hybrid
program P is u-safe for ϕpre and ϕpost in the time interval
[Tl, Tu], denoted T-SAFE[Tl,Tu]

u (P , ϕpre, ϕpost), if
u = inf{DistH(ν, JϕpostK) | ν ∈ Jϕpre⟨P ⟩[Tl,Tu]K } .

Given a hybrid program P , a precondition ϕpre and a time
interval [Tl, Tu], the real number u measures the shortest
distance between the reachable states by the program within
this duration, i.e., Jϕpre⟨P [Tl,Tu]⟩K, and the set of unsafe
states. If u is positive, then all reachable states in the interval
considered by the system P from initial states satisfying
the precondition ϕpre stay safe. The bigger u, the safer the
system. In contrast, if u is negative, then some reachable
states violate the safety condition ϕpost. If u is 0, then the

system cannot be considered safe as its safety may depend
on very small perturbations of the system variables [17].

C. Timed Quantitative Robustness and Attack Impact

Now, suppose that system engineers checked the safety of
their system and got T-SAFE[Tl,Tu]

u (P , ϕpre, ϕpost), with u > 0.
Furthermore, suppose that at time Tl < T < Tu, the IDS
detects an attack ATT(P). The question is: Can the system
deal with this kind of attack for the next Tu− T time instants?
In other words, is the system robust enough when exposed to
such attacks? The following definitions provide some answers.
Definition 4 (Timed quantitative robustness). Given a hy-
brid program P , time points Tl and Tu, u, u1, δ ∈ R, and
formulas ϕpre and ϕpost, we say that P is δ-robust in the
time interval [Tl, Tu] when exposed to attack ATT, written
T-ROBUST

[Tl,Tu]
δ (ATT(P), ϕpre, ϕpost), if

• T-SAFE[Tl,Tu]
u (P , ϕpre, ϕpost), with u > 0

• T-SAFE[Tl,Tu]
u1

(ATT(P), ϕpre, ϕpost)

• δ = u1/u.
For notation, we write T-ROBUSTT

δ(ATT(P), ϕpre, ϕpost) to
mean T-ROBUST

[0,T]
δ (ATT(P), ϕpre, ϕpost).

Now, if δ is a positive number, then we can say that the
attack does not compromise the safety of the system under
attack because our system is robust enough. However, if δ < 0
then the system under attack may reach unsafe states, and we
may be interested in getting an estimate of the impact of the
attack on the safety of the system.
Definition 5 (Timed quantitative impact). Given a hybrid
program P , time points Tl and Tu, real numbers u, u1, δ ∈ R,
and formulas ϕpre and ϕpost, we say that an attack ATT has
an impact δ on program P in the time interval [Tl, Tu], written
T-IMPACT

[Tl,Tu]
δ (ATT(P), ϕpre, ϕpost), if

• T-SAFE[Tl,Tu]
u (P , ϕpre, ϕpost), with u > 0

• T-SAFE[Tl,Tu]
u1

(ATT(P), ϕpre, ϕpost)

• δ = 0, if u1 > 0; δ = |u1/u|, if u1 < 0.
Again, we write T-IMPACTT

δ(ATT(P), ϕpre, ϕpost) to mean
T-IMPACT

[0,T]
δ (ATT(P), ϕpre, ϕpost).

D. Timed Quantitative Attack Tolerance

Here, it should be said that, for several reasons, certain
attacks might be not too nasty and they might have a limited
impact on the system only for a relatively small time interval
in which the system reaches unsafe states. In this case, system
engineers might decide not to take action to avoid stopping
production, accepting a bounded degree of unsafety for a
limited period of time [2].
Definition 6 (Timed quantitative tolerance). Given a
hybrid program P , time points T and T3, with T < T3,
a real number u ∈ R, and properties ϕpre and ϕpost,
we say that in the time interval [T, T3] the program P
exposed to an attack ATT tolerates a potential unsafety
u lasting for a time interval at most TH long, written as
T-TOLERANT[T,T3]

u (ATT(P), ϕpre, ϕpost, TH), if there are time
instants T1, T2, with T < T1 < T2 < T3, such that:

5

• T-SAFE[T,T1]
u1

(ATT(P), ϕpre, ϕpost), for some u1 > 0

• T-SAFE[T1,T2]
u2

(ATT(P), ϕpre, ϕpost), for some u2 ≥ u

• T-SAFE[T2,T3]
u3

(ATT(P), ϕpre, ϕpost), for some u3 > 0

• T2 − T1 ≤ TH .
Here, within the time interval [T, T3] we have a

potentially unsafe sub-interval [T1, T2], whose length is
bounded by a threshold TH, where the (degree of) un-
safety is bounded by a constant u. We sometimes write
T-TOLERANT[T,T3]

u (ATT(P), ϕpre, ϕpost, TH, T1, T2) to explic-
itly point out the timing instants T1 and T2.

In the following example, we show how the above
definitions apply to the scheduled attacks proposed in Fig. 3.
We recall that P ∗ denotes the genuine cooled engine system,
where P ≡ ctrl; plant is defined in Fig. 2. Furthermore,
according to the dynamic of our engine system, the time
units mentioned in the examples are expressed in minutes.
Example 1 (Scheduled integrity attack with constant bound).
In this example, we will focus on the attack in Fig. 3, in which
the malware is instantiated with the second payload, PLDIC,
to implement an integrity attack on the measurements with a
constant offset bound. We reason in the worst-case scenario,
i.e., we assume that the attack starts when the temperature of
the system reaches 101 degrees.
• Let us assume OFFSET = 6 and DURATION = 2. We

recall that the malware is triggered until tg = START +
DURATION (this is the last moment when the attack may
have a go). In this case, in the worst case scenario the
plant takes 1 minute, and at time START + DURATION +1
the temperature may reach 104 degrees because during the
attack the controller will keep sensing a temperature less
than or equal to 100 degrees and it will not activate the
cooling system. When the attack is over, three minutes
after the START, the controller will sense the real (high)
temperature and it will activate the cooling system. The
robustness of the system under attack is 1, at any time T,
with T < START, while it drops to 1

4 at any time T, with
T ≥ START+DURATION+1; in this case the impact of the
attack on the system is 0 at any time T. More formally,
– T-ROBUSTT

1(ATT(P
∗), ϕpre, ϕpost) for 0 < T < START

– T-ROBUSTT
1
4
(ATT(P ∗), ϕpre, ϕpost) for any point in

time T ≥ START + DURATION + 1
– T-IMPACTT

0(ATT(P
∗), ϕpre, ϕpost) for any T > 0.

• Let us assume OFFSET = 6 and DURATION = 5. In
this case, the temperature may reach 105 degrees after
4 minutes, and 107 degrees after 6 minutes. Then, the
cooling system will be activated. Here, the robustness
of the system under attack is 1, at any time T, with
T < START, but it drops to − 2

4 , at any time T, with
T ≥ START + DURATION + 1. In this case the impact of
the attack on the system is 2

4 , as the system under attack
may reach at most the temperature 107. Notice that once
the attack terminates, it will require 4 time instants of
cooling to drop the temperature to 105 degrees. Formally,
– T-ROBUSTT

1(ATT(P
∗), ϕpre, ϕpost) for 0 < T < START,

– T-ROBUSTT
− 2

4
(ATT(P ∗), ϕpre, ϕpost) for T≥START +6.

– T-IMPACTT
2
4
(ATT(P ∗), ϕpre, ϕpost), for T ≥ START +6.

– T-TOLERANT
[0,T]
−2 (ATT(P ∗), ϕpre, ϕpost, TH), for

TH = START + DURATION + 1 + 4− (START + 4) = 6
and T > START + DURATION + 5.

The last statement says that the attack drags the system into
unsafe states for at most 6 time instants during the time
interval [START +4, START + DURATION +1+4], with an
(un)safety −2. However, after time START+DURATION+5
the system under attack recovers safety.

More examples can be found in the Appendix (Section A).

V. ESTABLISHING TIMED PROPERTIES

For a system under timed attack, we can establish timed
properties, i.e., Def. 4, Def. 5, and Def. 6 by directly comput-
ing the timed safety of the system under attack. However, the
computation of timed safety may be difficult, as it requires
computing the infimum distance from all admissible states.
This is particularly difficult for a system under timed attack,
due to (1) the complications caused by the attack and (2) the
interplay between system dynamics and timing aspects.

Thus, instead of directly reasoning about the timed safety
for a compromised system, we define a notion of distance to
measure the behavioral differences between the compromised
system and the genuine one, and then use the safety of the
genuine system to derive the safety of the compromised one.
In particular, we use simulation distance, in the style of Chong
et al. [9] to measure an upper bound of the behavioral distance
between two programs. Intuitively, programs P and Q are in
simulation at distance d if given the same initial condition, Q
can mimic the behaviors of P , i.e., Q is able to reach states
whose distance from those reached by P is at most d. Using
simulation distance, we can derive a lower bound of safety
for the compromised system without direct computation of
the infimum distance from all the states reached. Moreover, the
relational nature of simulation distance helps system engineers
pinpoint and focus on specific components or behaviors where
the compromised system diverges from the genuine one,
making it more practical for reasoning with complex systems.

In this section, we first introduce the notion of timed
simulation distance (Section V-A), and then we show how
to use this notion to establish the introduced timed properties
(Section V-B). After that, we show how to reduce proving the
timed distance to proving untimed distance (Section V-C).

A. Timed Simulation Distance

In order to provide proof techniques to reason about our
timed properties, we propose a notion of timed simulation dis-
tance obtained by refining an untimed version, proposed in [9].
Definition 7 (Untimed vs. Timed simulation distance). For
programs P , Q, a formula ϕpre, and a variable set H, we say:
• P and Q are at distance d with respect to ϕpre and H,

written P ⊑ϕpre,H,d Q, if for each state ν1 ∈ Jϕpre⟨P ⟩K,
there exists a state ν2 ∈ Jϕpre⟨Q⟩K such that ρH(ν1, ν2) ≤ d.

6

• P and Q are at distance d with respect to ϕpre and H for
the interval [T1, T2], written P ⊑[T1,T2]

ϕpre,H,d Q, if for each state
ν1 ∈ Jϕpre⟨P ⟩[T1,T2]K there exists a state ν2 ∈ Jϕpre⟨Q⟩K
such that ρH(ν1, ν2) ≤ d.

For a program P , an attack ATT, and an interval [Tl, Tu], the
timed simulation ATT(P) ⊑[Tl,Tu]

ϕpre,H,d P expresses that for each
state ν1 reachable by the system under attack ATT(P) within
the interval [Tl, Tu], from some initial states in JϕpreK, there is
a state ν2 reachable by P from some initial state in JϕpreK, such
that ν1 and ν2 are at distance at most d, for a fixed variable set
H. The distance d gives an upper bound on the perturbation
introduced by the attack on the safety of the behaviors originat-
ing from JϕpreK. The set H here often refers to variables that
are relevant to the system’s postcondition, i.e., VAR(ϕpost).
Remark 1. Note that in Definition 7 we choose Jϕpre⟨Q⟩K
for the program Q (which often represents the genuine sys-
tem), rather than other options, such as ϕpre⟨Q⟩[T1,T2] or
ϕpre⟨Q⟩[Tl,Tu] for some Tl ≤ Tu. This design choice is rea-
sonable to us since the genuine system may require different
timing to simulate the behavior of the compromised system.

Our timed simulation distance can be used to establish upper
bounds on the loss of timed safety caused by an attack:

Theorem 1. Given a hybrid program P , a time interval
[Tl, Tu], reals d, u > 0, and formulas ϕpre and ϕpost. If
• T-SAFE[0,∞]

u (P , ϕpre, ϕpost), and

• ATT(P) ⊑[Tl,Tu]
ϕpre,H,d P , for H = VAR(ϕpost)

then T-SAFE[Tl,Tu]
u1

(ATT(P), ϕpre, ϕpost), for some u1 ≥ u−d.
The first item T-SAFE[0,∞]

u (P , ϕpre, ϕpost) basically deals
with all reachable states of P . The distance d proven in the
second item leads to a lower bound of the safety for the
attacked program ATT(P), as u1 ≥ u− d.

B. Reasoning about Timed Properties

Assuming we know the quantitative safety of the gen-
uine system, i.e. T-SAFE[0,∞]

u (P , ϕpre, ϕpost) (whose u is no
greater than u1 of T-SAFE[Tl,Tu]

u1
(P , ϕpre, ϕpost) for any valid

interval [Tl, Tu]). Then for an attack ATT, we can establish the
properties of timed robustness (Def. 4), impact (Def. 5), and
tolerance (Def. 6), with the help of Thm. 1, as follows:

Timed robustness Now, if we prove ATT(P) ⊑[Tl,Tu]
ϕpre,H,d P

for H = VAR(ϕpost) and some d, then using Thm. 1 we can
derive a lower bound on timed robustness.
Corollary 1. Given a hybrid program P , a time interval
[Tl, Tu], reals d, u > 0, and formulas ϕpre and ϕpost. If
• T-SAFE[0,∞]

u (P , ϕpre, ϕpost), and

• ATT(P) ⊑[Tl,Tu]
ϕpre,H,d P , for H = VAR(ϕpost)

then T-ROBUST
[Tl,Tu]
δ (ATT(P), ϕpre, ϕpost) for δ ≥ (u−d)/u.

Timed impact Similarly, relying on Thm. 1, we can derive an
upper bound on the timed impact of a program:
Corollary 2. Given a hybrid program P , a time interval
[Tl, Tu], reals d, u > 0, and formulas ϕpre and ϕpost. If
• T-SAFE[0,∞]

u (P , ϕpre, ϕpost), and

• ATT(P) ⊑[Tl,Tu]
ϕpre,H,d P , for H = VAR(ϕpost)

then T-IMPACT
[Tl,Tu]
δ (ATT(P), ϕpre, ϕpost), with δ = 0, if d−

u < 0, and δ ≤ (d−u)
u , if d− u > 0.

Timed tolerance In order to derive a lower bound on timed tol-
erance (Def. 6), we use the following result based on Thm. 1.

Corollary 3. Given a hybrid program P , an attack ATT, time
points T and T3, a time duration TH, real number u > 0,
properties ϕpre and ϕpost, and a variable set H = VAR(ϕpost).
If there exist time points T1 and T2 such that
• T-SAFE[0,∞]

u (P , ϕpre, ϕpost)

• ATT(P) ⊑[T,T1]
ϕpre,H,d1 P for some d1 such that u− d1 > 0

• ATT(P) ⊑[T1,T2]
ϕpre,H,d2 P

• ATT(P) ⊑[T2,T3]
ϕpre,H,d3 P for some d3 that u− d3 > 0

• T2 − T1 ≤ TH
then T-TOLERANT

[T,T3]
u−d2 (ATT(P), ϕpre, ϕpost, TH).

Note that in Corollary 3, the second, third, and fourth items
correspond to the safety requirements in Def. 6.

We are often interested in proving that the system is
tolerant from the very beginning to a time point T, that is,
T-TOLERANT[0,T]

u2
(ATT(P), ϕpre, ϕpost, TH).

C. Proving Timed Simulation Distance via Untimed Distance

Now, timed properties can be established by proving timed
distances, i.e., ATT(P) ⊑[Tl,Tu]

ϕpre,H,d P , which concerns the
reachable states of ATT(P) within a time interval. To reason
about timing, we encode it as part of the dL programs, and use
the following theorems to reduce proving timed distances to
proving untimed distances. The latter is easier to reason with,
and benefits from techniques in existing work, e.g., [21].

The following theorem relates timed and untimed distances:
Theorem 2 (Timed vs. untimed simulation distance). For a
hybrid program P with a global clock tg , a program Q, a
formula ϕpre, and a time point T ≥ 0, it holds that:

(?0 ≤ tg ≤ T;P)∗ ⊑ϕpre,H,d Q → P ∗ ⊑[0,T]
ϕpre,H,d Q .

The following two propositions help reason with programs
including conditionals on the global clock. They are often
useful in splitting the (compromised) system into segments
based on whether an attack is active.
Proposition 1. For a hybrid program P with a global clock
tg , a formula ϕ, and timing points 0 ≤ T1 ≤ T2, it holds that:
[(?0 ≤ tg<T1;P)∗; (?T1 ≤ tg≤T2;P)∗]ϕ ↔ [(?0 ≤ tg ≤ T2;P)∗]ϕ

Proposition 2. For a program P with a global clock tg , a
formula ϕ, and timing points 0 ≤ T1 ≤ T2, it holds that:
[(?tg < T1;P)∗ ; (?T1 ≤ tg ≤ T2;P)∗ ; (?tg > T2;P)∗]ϕ ↔ [P ∗]ϕ

With the help of Theorem 2, we can focus on prov-
ing the non-timed version of simulation distance, i.e.,
ATT(P) ⊑ϕpre,H,d P , which is essentially a forall-exists
relational property on two programs. Next, we introduce a
system of techniques that can be used to reason with such a
property, with a focus on timing aspects.

VI. PROVING UNTIMED DISTANCE

In this section, we present a system of mechanisms dedi-
cated for reasoning with forall-exists properties in the setting

7

∀∃-DEF
[|(P || Q)ξ ⟩⟩ϕ↔ [P]⟨ξ(Q)⟩ϕ

∀∃-?-L
(ψ → ⟨ξ(Q)⟩ϕ) ↔ [|(?ψ || Q)ξ ⟩⟩ϕ

∀∃-?-R
([P](ξ(ψ) ∧ ϕ)) ↔ [|(P || ?ψ)ξ ⟩⟩ϕ

∀∃-;
Γ ⊢ [|(P1 || Q1)ξ ⟩⟩[|(P2 || Q2)ξ ⟩⟩ϕ

Γ ⊢ [|(P1;P2 || Q1;Q2)ξ ⟩⟩ϕ

∀∃-MR
Γ ⊢ [|(P || Q)ξ ⟩⟩ϕ ϕ ⊢ ψ

Γ ⊢ [|(P || Q)ξ ⟩⟩ψ

∀∃-;-L
Γ ⊢ [P1][|(P2 || Q)ξ ⟩⟩ϕ
Γ ⊢ [|(P1;P2 || Q)ξ ⟩⟩ϕ

∀∃-;-R
Γ ⊢ [|(P || Q1)ξ ⟩⟩⟨ξ(Q2)⟩ϕ
Γ ⊢ [|(P || Q1;Q2)ξ ⟩⟩ϕ

∀∃-∪-L
Γ ⊢ [|(P1 || Q)ξ ⟩⟩ϕ ∧ [|(P2 || Q)ξ ⟩⟩ϕ

Γ ⊢ [|(P1 ∪P2 || Q)ξ ⟩⟩ϕ

∀∃-∪-R
Γ ⊢ [|(P || Q1)ξ ⟩⟩ϕ ∨ [|(P || Q2)ξ ⟩⟩ϕ

Γ ⊢ [|(P || Q1 ∪Q2)ξ ⟩⟩ϕ

∀∃-∧
Γ ⊢ [|(P || Q)ξ ⟩⟩(ϕ∧ψ)

Γ ⊢ [|(P || Q)ξ ⟩⟩ϕ∧ [|(P || Q)ξ ⟩⟩ψ

∀∃-∨
Γ ⊢ [|(P || Q)ξ ⟩⟩ϕ∨ [|(P || Q)ξ ⟩⟩ψ

Γ ⊢ [|(P || Q)ξ ⟩⟩(ϕ∨ψ)
∀∃-V
ϕ ⊢ [P]ϕ1 ψ ⊢ ⟨ξ(Q)⟩ψ1

(ϕ∧ψ) ⊢ [|(P || Q)ξ ⟩⟩(ϕ1 ∧ψ1)
WHERE (VAR(ϕ) ∪ VAR(ϕ1)) ∩ VAR(ξ(Q)) = ∅ AND (VAR(ψ) ∪ VAR(ψ1)) ∩ VAR(P) = ∅

Fig. 6. General proof rules for [|(P || Q)ξ ⟩⟩ϕ

of dL. In particular, we develop a proof system (Section VI-A)
for general forall-exists properties, and a collection of tech-
niques to reason with the timing of dynamics (Section VI-B).

To reason with a forall-exists property, we develop a proof
system for these properties, inspired by the technique of self-
composition [14], [15]. We first rename variables used by
the genuine program into a fresh set of variables, and then
capture the relationship between the two programs using both
the original and renamed variables. Using such an approach,
ATT(P) ⊑ϕpre,H,d P can be encoded as a dL formula with
mixed modalities, i.e., []⟨ ⟩ϕ, which can be proven using
proof rules and tools developed for dL.

First, we define renaming functions, as follows:
Definition 8 (Renaming). For a program P and a set of
variables V such that V ∩ VAR(P) = ∅, a function ξ :
VAR(P) → V is a renaming function for P if it is a bijection.

We write ξ(P) for the program equivalent to P but whose
variables have been renamed according to ξ. Renaming func-
tions similarly apply to dL formulas and states.

Then, the following theorem captures untimed distances as
dL formulas, by extending existing work on untimed distance
on sensor attacks [21] to a general forall-exists setting:
Theorem 3 (dL encoding of simulation distance). For a
program P , an attack function ATT, formulas ψ, ϕ and ϕpre,
a renaming function ξ, a variable set H and d ∈ R, if we have
• ψ→ [ATT(P)]⟨ξ(P)⟩ϕ
• ϕpre→∃x1, x2 · · ·xj such that (ψ ∧ ξ(ϕpre)), where

VAR(ξ(ϕpre)) = {x1, x2, · · ·xj}

• ϕ→ ρξH ≤ d, for ρξH =
√∑

x∈H (x− ξ(x))
2

then ATT(P) ⊑ϕpre,H,d P .
The proof obligation is mainly on proving formulas of the

form ψ→ [ATT(P)]⟨ξ(P)⟩ϕ. To help with that, we introduce
a special notation, denoted ∀∃-modality, to readily and con-
cisely encode general forall-exists formulas. The ∀∃-modality,
written [|(P || Q)ξ ⟩⟩ϕ, is defined as

[|(P || Q)ξ ⟩⟩ϕ ≡ [P]⟨ξ(Q)⟩ϕ
where VAR(P)∩VAR(ξ(Q)) = ∅. We will call the programs P
and Q, respectively, the left and right programs. Formulas like
[ATT(P)]⟨ξ(P)⟩ϕ are now expressed as [|(ATT(P) || P)ξ ⟩⟩ϕ.

A. A Proof System for ∀∃-modality

We have developed a set of proof rules, to reason with the
∀∃-modality. Our proof system allows us to derive sequents
[12] of the form Γ ⊢ ∆, where antecedent Γ and succedent
∆ are finite sets of dL formulas. The semantics of Γ ⊢ ∆ is
that of the dL formula

∧
ϕ∈Γ ϕ→

∨
ψ∈∆ ψ.

General proof rules We first present a set of general proof
rules, shown in Fig. 6, adapted from existing work on simu-
lation distances [21] and relational program logics for forall-
forall relational properties [22], [23], [24]. Most rules follow
the semantics of the dL modalities, and their meanings should
be straightforward to interpret.

Proof rules for loops For relational formulas that have loops
such as [|(P ∗ || Q∗)ξ ⟩⟩, the reasoning often proceeds in two
possible ways: (1) lock-step that the two loops run in a
synchronized manner, and (2) multi-step that the right loop
runs multiple iterations for every iteration of the left loop.
The following proof rules show the two cases:

∀∃-LOCK
Γ ⊢ ϕinv ϕinv ⊢ [|(P || Q)ξ ⟩⟩ϕinv ϕinv ⊢ ψ

Γ ⊢ [|(P ∗ || Q∗)ξ ⟩⟩ψ
∀∃-MULTI
Γ ⊢ ϕinv ϕinv ⊢ [|(P || Q∗)ξ ⟩⟩ϕinv ϕinv ⊢ ψ

Γ ⊢ [|(P ∗ || Q∗)ξ ⟩⟩ψ

Rule ∀∃-MULTI is often quite useful in reasoning about the
system’s behavior after the attack starts. For example, for
every control cycle of the compromised system P , the genuine
system Q often needs multiple cycles to match the impact of
the attack on P . Rule ∀∃-MULTI is needed in such a scenario.

In addition, we have the following auxiliary rules to reason
with the right program with loops. They can be derived from
the definition of the ∀∃-modality and the semantics of ⟨Q∗⟩ϕ.

∀∃-LOOPN
Γ ⊢ ∃n ∈ N [|(P || Qn)ξ ⟩⟩ϕ

Γ ⊢ [|(P || Q∗)ξ ⟩⟩ϕ

∀∃-LOOP*
Γ ⊢ [|(P || Q∗;Q∗)ξ ⟩⟩ϕ
Γ ⊢ [|(P || Q∗)ξ ⟩⟩ϕ

Proof rules for dynamics The proof rules in Fig. 7 allows
one to reason with two dynamics by composing them into a
single program. Rule ∀∃-ODE-∀ reduces the reasoning with
a ∀∃-modality to reasoning with two modalities of necessity.
Intuitively, the formula ϕ holds for all executions of x′ = θ

8

∀∃-ODE-∀
Γ ⊢ [x′ = θ][ξ(y′ = δ)](ψ(tl, ξ(tl))→ϕ)

Γ ⊢ [|(x′ = θ, tl
′ = 1 || y′ = δ, tl

′ = 1)ξ ⟩⟩ϕ

∀∃-ODE-G
Γ ⊢ [x′ = θ, ξ(y′ = δ)&(ϕx ∧ ξ(ϕy))]ϕ Γ ⊢ [x′ = θ, ξ(y′ = δ)](ϕx → ξ(ϕy))

Γ ⊢ [|(x′ = θ&ϕx || y′ = δ&ϕy)ξ ⟩⟩ϕ

∀∃-ODE-I
Γ ⊢ [x′ = θ, ξ(y′ = δ)]ϕ

Γ ⊢ [|(x′ = θ, tl
′ = 1 || y′ = δ, tl

′ = 1)ξ ⟩⟩ϕ

∀∃-ODE-C
ϵx ≤ ϵy Γ ⊢ [x′ = θ, ξ(y′ = δ)&(ϕx ∧ ξ(ϕy))]ϕ Γ ⊢ [x′ = θ, ξ(y′ = δ)](ϕx → ξ(ϕy))

Γ, tl = 0, ξ(tl = 0) ⊢ [|(x′ = θ, tl
′ = 1&(ϕx ∧ tl ≤ ϵx) || y′ = δ, tl

′ = 1&(ϕy ∧ tl ≤ ϵy))ξ ⟩⟩ϕ

Fig. 7. Proof rules for the modality [|(P || Q)ξ ⟩⟩ϕ on ODEs

and ξ(y′ = δ) if a timing condition ψ holds. Note that formula
ψ only refers to variables tl and ξ(tl): it captures a relationship
between the two local clocks. Here tl is neither in x nor in
y. Therefore, there always exists a value of ξ(tl) that can
make ψ(tl, ξ(tl)) true. Building from this rule, Rule ∀∃-ODE-
I obtains a composition of dynamics by merging the two
modalities of necessity in ∀∃-ODE-∀ into a single modality
of necessity on the dynamics x′ = θ and ξ(y′ = δ). With this
merge, all solutions of x′ = θ and ξ(y′ = δ) evolve for the
same amount of time. Formulas like [x′ = θ, ξ(y′ = δ)]ϕ, is
often easier to verify.

Rule ∀∃-ODE-C is designed to reason with two dynamics
with evolution constraints. Note that the constraints ϕx and
ϕy are time-invariant (i.e., they don’t concern timing related
variables like tg and tl). The third premise is the key that,
for any execution of the composition, the evolution constraint
for the right dynamics ϕy holds, so long as the left evolution
constraint ϕx holds. That means, intuitively, the evolution of
the right dynamics would not restrict the trajectory of the left
dynamics, which captures the “forall executions of the left”
requirement of the ∀∃-modality. The condition on clocks is
straightforward: the maximum interval for the right dynamics
shall be no less than the maximum interval of the left one,
so the right dynamics always have enough time for evolution.
Rule ∀∃-ODE-G is a generalization of Rule ∀∃-ODE-C, where
the constraint ϕx and ϕy may involve timing.

The proof system introduced in this section is a sound proof
technique to derive generic forall-exist properties.
Theorem 4 (Soundness of the proof system). If a sequent Γ ⊢
∆ can be derived through the proof system then the formula∧
ϕ∈Γ ϕ→

∨
ψ∈∆ ψ holds.

Detailed proof can be found in the Appendix (Section C).

B. Reasoning with Timing of Dynamics

A major difficulty in reasoning with ∀∃-modality in the
setting of timed attacks, is how to deal with the timing of
dynamics. It comes with at least two main challenges: (1) how
to express the accumulated impact of the attack on a system’s
dynamics, as the attack often lasts for a duration in timed
attacks, and (2) how to properly align the right dynamics, e.g.,
its execution time, with the left so we can prove properties
on a composition of the two dynamics. We elaborate on our
solutions to both challenges.

Reasoning with the accumulated impact of dynamics The
first main challenge is how to reason about the impact of the
dynamics accumulated in multiple cycles of evolution. For

example, under a scheduled DoS attack, the left dynamics
would run for at least the duration of the attack under an
incorrect control action, while the right dynamics may switch
control actions back and forth and stay stable around one
equilibrium. Reasoning about the relationship between the two
dynamics requires first expressing the continuous impact of the
attack on the left dynamics during multiple cycles.

To help express the accumulated impact of dynamics
of multiple cycles, we introduce a timed structure for dy-
namics for a program modeling the dynamics: plant ≡
(x′ = θ, tg

′ = 1)&ϕ. The T duration program construct of
plant, denoted plant⟨T⟩, concerns, intuitively, for a starting
state ω, all reachable states of the program in the duration
[T1, T1 + T], where T1 is the current time of ω. Formally, its
semantics is the following:
Jplant⟨T⟩K = {(ω, ν) | (ω, ν) ∈ JplantK and ν(tg)− ω(tg) ≤ T}

The following proposition holds naturally:
Proposition 3. For a formula ψ and a timed program plant ≡
(x′ = θ, tg

′ = 1)&ϕ, it holds that
[to := tg ; (x

′ = θ, tg
′ = 1)&(ϕ∧ tg ≤ to + T)]ψ→ [plant⟨T⟩]ψ

where to is a fresh variable and ϕ doesn’t involve to.
To express and reason about accumulated impact, we are

often more interested in a continuous sequence of evolu-
tion with the same control action. For example, the DoS
attack forces the cooling system to deploy the same control
delta := 1 for multiple cycles. These actions are permanent
control actions [25]. Intuitively, an action is permanent if
executing it more than once in a row has no consequence
for the system dynamics. This is true in the common case of
actions that only assign constant values to control variables
that are read but not modified by the plant, such as delta := 1
and delta := −0.5 in the examples.

The following proposition connects the timed program to
dL programs with timing encoded (and thus Theorem 2).
With this proposition, we reduce the reasoning of the ac-
cumulated impact of an attack in multiple cycles, i.e.,
(?T1 ≤ tg ≤ T2 ; tl := 0; action; plant)∗ to the reasoning of a
timed program action; plants

⟨T2−T1+ϵ⟩:
Proposition 4. For a control action action, a program
plant ≡ (x′ = θ, tg

′ = 1, tl
′ = 1)&(ϕ∧ tl ≤ ϵ), a formula ψ,

and two time points T1, T2, if (i) action is permanent and
doesn’t modify ϕ, and (ii) ϕ and ψ are time-invariant, then:

[action; plants
⟨T2−T1+ϵ⟩]ψ

→ [(?T1 ≤ tg ≤ T2 ; tl := 0; action; plant)∗]ψ

where plants ≡ (x′ = θ, tg
′ = 1)&ϕ.

9

(System Constants : ϵ = 1 ∧ xL = 100 ∧ r = 3)

ϕpre ≡ xp = 36

ϕpost ≡ 29.5 ≤ xp ≤ 42.1

inc ≡ ?xs < 35; sc := 1

dec ≡ ?xs ≥ 35; sc := 1/4

ctrl ≡ tl := 0 ;xs := xp ; (inc∪ dec)

plant ≡ (xp
′ = r(sc− xp

xL
), tg

′ = 1, tl
′ = 1)&(xp ≥ 0∧ tl ≤ ϵ)

Fig. 8. dL model of a water tank with sensing

Intuitively, the proposition holds due to the flow prop-
erty of autonomous differential equations [26], the evolution
constraint being time-invariant, and the action is permanent.
Detailed proof can be found in the Appendix (Section C).

Aligning timing of dynamics Another main challenge is
how to reason with two dynamics running for different
durations. For example, consider formulas of the form
[|(x′ = θ, tl

′ = 1&tl ≤ ϵx || y′ = δ, tl
′ = 1&tl ≤ ϵy)ξ ⟩⟩ϕ,

where the left and right dynamics may have different control
intervals, e.g., ϵx ≥ ϵy . It is non-trivial to prove a property on
these two dynamics.

We tackle this problem by properly aligning the execution
time of right dynamics with the left so we can prove properties
on a composition of the two dynamics, e.g., using rules
introduced in Fig. 7. We achieve this alignment by scaling
the time of the right dynamics, so that its state space stays
the same but its duration after scaling aligns with the left’s
duration. After that, we can apply rules introduced in Fig. 7.
We can achieve such a scaling using the technique of time re-
parametrization [26] (or time stretching [27]) for autonomous
differential equations (the way how dynamics are modeled
in dL). Time re-parametrization changes the way time is
measured or expressed along the trajectory of the system
without altering the actual trajectory in the state space. In
particular, the following proposition holds:
Proposition 5. For a program with dynamics plant ≡
(x′ = θ, tg

′ = 1, tl
′ = 1)&(ϕ∧ tl ≤ ϵ), a constant k > 0, and

a formula ψ, if the constraint ϕ and formula ψ are time-
invariant, then the following property holds:

⟨(x′ = k ∗ θ, tl′ = k)&(ϕ∧ tl ≤ ϵ)⟩ψ→⟨plant⟩ψ .

Up to now, we have introduced a system of techniques to
reason with untimed distance and timing aspects. Next, we
showcase these techniques with a case study.

VII. CASE STUDY: A WATER TANK SYSTEM

In this case study, we demonstrate how to use the introduced
machinery to establish timed properties. We focus on the proof
derivations for a scheduled DoS attack on sensor readings and
discuss relevant timed properties. We then briefly describe how
the example derivations can be adjusted for other attacks.

Consider an example of a water tank shown in Fig. 8,
which is inspired by literature [28]. It mixes the salt and water
inside the tank. Initially, it contains 36 lb of salt (xp = 36)
dissolved in 100 gal of water (xL = 100). An inflow of water

with a salt concentration rate sc (lb of salt/gal) is entering
the tank at a rate of r = 3 gal/min. The well-stirred mixture
is draining from the tank at the same rate r. The tank has
two modes of control: a salt decreasing mode with sc set to
1/4 if the measured salt level is high (?xs ≥ 35) and a salt
increasing mode with sc set to 1 if the measured salt level
is low (?xs < 35). The rate of change of salt in the tank xp′

is equal to the rate at which salt is flowing in minus the rate
at which is flowing out: xp′ = r(sc− xp/xL), where xp/xL
computes the concentration of the salt. The postcondition we
are interested is that the salt level stays within a certain
level (29.5 ≤ xp ≤ 42.1). The reachable salt level of the water
tank is (approximately) 34.5 ≤ xp ≤ 37.1 and its quantitative
safety is (at least) 5.

Scheduled Sensor DoS Attack Consider a scheduled DoS
attack that disables the sensor for a duration of 2 minutes
(DURATION = 2) starting at time 5 (START = 5). The attack
can be modeled as:

ctrlcomp ≡ tl := 0 ; MALWARE ; (inc∪ dec)
MALWARE ≡ (?TRIGGER ; ?⊤) ∪ (?¬TRIGGER ; xs := xp)

TRIGGER ≡ START ≤ tg ≤ START + DURATION

Note that it’s non-trivial to calculate the quantitative safety
of the compromised system, especially, the duration when the
attack is active. In addition, the solution to the differential
equation is an exponential function that cannot be expressed
in tools like KeYmaera X [29].

ϕξpre ≡ xp = 36 ∧ xp1 = 36 ∧ tg = 0 ∧ tg1 = 0

ϕξpost ≡
√

(xp − xp1)
2 ≤ 6

ξ ≡ {xp 7→ xp1 , xs 7→ xs1 , sc 7→ sc1, tl 7→ tl1 , tg 7→ tg1}
P ≡ ATTdos(ctrl; plant)

Q ≡ (ctrl; plant)

ϕt1 ≡ 0 ≤ tg < START

ϕt2 ≡ START ≤ tg ≤ START + DURATION

ϕt3 ≡ tg > START + DURATION

ϕ1 ≡ xp = xp1 ∧ 34.5 < xp < 37.1

ϕ2 ≡ (−1.1 ≤ xp − xp1 ≤ 6 ∧ 34.5 < xp1 < 37.1)

ϕ3 ≡ (0 ≤ xp
′ − xp1

′ ≤ 1.3)∧ (tg − to ≤ DURATION + ϵ)

∧xp − xp1 ≤ (2.1 + (tg − to) ∗ 1.3))

ϕm ≡ ϕm1 ∨ϕm2 ∨ϕm3 ∨ϕm4

ϕm1 ≡ xs < 35 ∧ xp ≥ 35∧xp1 < 35∧ 0 ≤ xp − xp1 ≤ 2.1

ϕm2 ≡ xs < 35 ∧ xp < 35∧xp1 < 35∧ −0.5 ≤ xp − xp1 ≤ 0

ϕm3 ≡ xs ≥ 35∧xp < 35∧xp1 = 35∧ −0.5 ≤ xp − xp1 ≤ 0

ϕm3 ≡ xs ≥ 35∧xp ≥ 35∧xp1 = 35∧ 0 ≤ xp − xp1 ≤ 2.1

plants ≡ (xp
′ = r(sc− xp/xL), tg

′ = 1)&(xp ≥ 0)

ϕ ≡ xp ≥ 0∧ tl ≤ ϵ

planti ≡ (xp
′ = r(1− xp/xL), tg

′ = 1, tl
′ = 1)&ϕ

plantk ≡ (xp
′ = 1/3 ∗ r(1− xp/xL), tl

′ = 1/3)&ϕ

ϕeo ≡ xp ≥ 0∧ tg ≤ to + DURATION + ϵ

planto ≡ (xp
′ = r(1− xp/xL), tg

′ = 1)&ϕeo

plant∞m ≡ xp
′ = r(1− xp/xL), tg

′ = 1,

xp1
′ = 1/3 ∗ r(1− xp1/xL), tl1

′ = 1/3

plantmerge ≡ plant∞m &(ϕ∧ ξ(ϕeo))

Fig. 10. Definitions of formulas and programs used in the example proof

10

· · ·∀∃-LOCK
ϕξ
pre ⊢ [|((?ϕt1 ;P)∗ || Q∗)ξ ⟩⟩ϕ1

Fig. 11
ϕ1 ⊢ [|((?ϕt2 ;P)∗ || Q∗)ξ ⟩⟩ϕ2

Similar to Fig. 11

ϕ2 ⊢ [|((?ϕt3 ;P)∗ || Q∗)ξ ⟩⟩ϕξ
post

∀∃-MR
ϕ1 ⊢ [|((?ϕt2 ;P)∗ || Q∗)ξ ⟩⟩[|((?ϕt3 ;P)∗ || Q∗)ξ ⟩⟩ϕξ

post
∀∃-;

ϕ1 ⊢ [|((?ϕt2 ;P)∗ ; (?ϕt3 ;P)∗ || Q∗;Q∗)ξ ⟩⟩ϕξ
post

∀∃-LOOP*
ϕ1 ⊢ [|((?ϕt2 ;P)∗ ; (?ϕt3 ;P)∗ || Q∗)ξ ⟩⟩ϕξ

post
∀∃-MR

ϕξ
pre ⊢ [|((?ϕt1 ;P)∗ || Q∗)ξ ⟩⟩[|((?ϕt2 ;P)∗ ; (?ϕt3 ;P)∗ || Q∗)ξ ⟩⟩ϕξ

post
∀∃-;

ϕξ
pre ⊢ [|((?ϕt1 ;P)∗ ; (?ϕt2 ;P)∗ ; (?ϕt3 ;P)∗ || Q∗;Q∗)ξ ⟩⟩ϕξ

post
∀∃-LOOP*

ϕξ
pre ⊢ [|((?ϕt1 ;P)∗ ; (?ϕt2 ;P)∗ ; (?ϕt3 ;P)∗ || Q∗)ξ ⟩⟩ϕξ

post
PROP 2

ϕξ
pre ⊢ [|(P ∗ || Q∗)ξ ⟩⟩ϕξ

post
→R

⊢ ϕξ
pre → [|(P ∗ || Q∗)ξ ⟩⟩ϕξ

post

Fig. 9. Proof of a simulation distance for the water tank

dL rules
ϕ1 ⊢ [|(?⊤ || Q∗)ξ ⟩⟩ϕm

Fig. 12
ϕm1 ⊢ · · · other cases

∨L
ϕm ⊢ [|(· · · || Q∗)ξ ⟩⟩ϕ2

∀∃-MR
ϕ1 ⊢ [|(?⊤ || Q∗)ξ ⟩⟩[|(· · · || Q∗)ξ ⟩⟩ϕ2

∀∃-;
ϕ1 ⊢ [|(· · · || Q∗;Q∗)ξ ⟩⟩ϕ2

∀∃-LOOP*
ϕ1 ⊢ [|(inc; plants⟨DURATION+ϵ⟩ || Q∗)ξ ⟩⟩ϕ2 · · ·

∀∃-∪-L
ϕ1 ⊢ [|(inc∪ dec ; plants⟨DURATION+ϵ⟩ || Q∗)ξ ⟩⟩ϕ2

PROP 4
ϕ1 ⊢ [|((?ϕt2 ;P)∗ || Q∗)ξ ⟩⟩ϕ2

Fig. 11. Proof of the distance when the attack is active

dL rules
· · · ⊢ [plantmerge]ϕ3

dL rules
ϕ3 ⊢ ϕ2

MR
· · · ⊢ [plantmerge]ϕ2

dL rules
· · · ⊢ [plant∞m](ϕeo→ ξ(ϕ))

∀∃-ODE-G
· · · , to = tg ⊢ [|(planto || plantk)ξ ⟩⟩ϕ2

PROP 3, dL
· · · ⊢ [|(· · · || plantk)ξ ⟩⟩ϕ2

PROP 5
· · · ⊢ [|(· · · || planti)ξ ⟩⟩ϕ2

dL
· · · ⊢ [|(· · · || inc ; plant)ξ ⟩⟩ϕ2

∀∃-∪-R, ∨R
ϕm1 , xs1 =xp1 , tl1 =0 ⊢ [|(· · · || (inc∪ dec) ; plant)ξ ⟩⟩ϕ2

dL
ϕm1 ⊢ [|(planti⟨DURATION+ϵ⟩ || Q)ξ ⟩⟩ϕ2

dL
ϕm1 ⊢ [inc][|(plants⟨DURATION+ϵ⟩ || Q)ξ ⟩⟩ϕ2

∀∃-;-L
ϕm1 ⊢ [|(inc; plants⟨DURATION+ϵ⟩ || Q)ξ ⟩⟩ϕ2

∀∃-LOOPN
ϕm1 ⊢ [|(inc; plants⟨DURATION+ϵ⟩ || Q∗)ξ ⟩⟩ϕ2

Fig. 12. Proof for the ϕt2 case (increasing mode)

We can use the introduced techniques and the original dL
axioms and rules to prove that the compromised system and
the genuine one are at simulation distance 6 with respect to
ϕpre and H = {xp}. We show the proof derivation in Fig. 9,
which refers to the definitions of formulas and programs
shown in Fig. 10. The proof rules used are shown at the left
of each derivation step (the notation dL in the derivation
means applying the normal dL rules and axioms). In the proof
derivation, we ignore certain parts using the notation · · · , if
the contents can be inferred from the context, e.g., succedent,
or the derivation can be constructed similarly to the other ones.

The derivation first splits the top-level obligation using
Proposition 2 into sub-goals corresponding to different time

durations based on whether the attack is active. Then, the
derivation focuses on the duration in which the attack is active
(Fig. 11). Fig. 11 and its sub-derivation in Fig. 12 present
the worst-case impact of the attack. Intuitively, they show
the scenario that the DoS attack starts when the salt level
is reaching the maximum under normal operation. After the
attack starts, the salt level will keep increasing and deviate
from the normal range the most. In particular, the derivation
in Fig. 11 focuses on the inc mode and leads to four cases,
one of which corresponds to the worst-case scenario, i.e., ϕm1

(Fig. 12). A key step in Fig. 11 is to collapse the impact of
the attack from multiple control cycles (?ϕt2 ;P)

∗ into one
timed dynamic, i.e., plants⟨DURATION+ϵ⟩, using Proposition 4.
The derivation in Fig. 12 focuses on the impact on dynamics
in the worst case scenario. A key step here is Proposition 5,
where we scale the dynamics of the genuine system so one
inc control cycle of the genuine system would align with
multiple cycles of the program plants with respect to time.
After the scaling, we can reason with the property of two
dynamics, using the proof rule ∀∃-ODE-G, by reasoning with
their combination plantmerge. The two promises of the rule
can be proven using dL proof rules.

Now, using the corollaries from Section V-B, we can
establish the properties of timed robustness, impact, and
tolerance from derivations like the one shown in Fig. 9,
For example, from the derivation of ϕξpre ⊢ [|((?ϕt1 ;P)

∗ |
| Q∗)ξ ⟩⟩ϕ1, we get untimed distance (?ϕt1 ;P)

∗ ⊑ϕpre,H,0
Q∗ as ϕ1 → ρξH = 0. Then by Theorem 2, we get
timed distance (?0 ≤ t ≤ T;P)∗ ⊑[0,T]

ϕpre,H,d Q for T =
START, and thus by Corollary 1, we get a lower
bound of time robustness for the interval [0, START]:
T-ROBUST

[0,START]
1 (ATT(P ∗), ϕpre, ϕpost). Similarly, from the

derivation of ϕξpre ⊢ [|((?ϕt1 ;P)
∗; (?ϕt1 ;P)

∗ || Q∗)ξ ⟩⟩ϕ2

and Corollary 2, we get an upper bound of time
impact for the time interval [0, START + DURATION]:
T-IMPACT

[0,START+DURATION]
δ (ATT(P ∗), ϕpre, ϕpost) for δ ≤

(6 − 5)/5 = 0.2. Furthermore, with the derivation for
ϕ2 ⊢ [|((?ϕt3 ;P)

∗ || Q∗)ξ ⟩⟩ϕξpost (omitted in Fig. 9), we
can prove that the simulation distance drops from 6 to 5

11

under 6.7 minutes. That means, the system already returns
to safety for the time interval [0, START + DURATION +6.7 =
13.7]. Therefore, by Corollary 3, we get timed tolerance
T-TOLERANT[0,13.7]

u2
(P ∗, ϕpre, ϕpost, 8.7) for some u2 ≥ −1.

Scheduled Bounded Sensor Attack We briefly discuss how
to adjust the derivation to prove other timed attacks. Con-
sider a bounded sensor attack that deviates the sensor read-
ing xs for up to 0.5 lb, and the attack lasts for a du-
ration of 2 minutes (DURATION = 2). Similar to exam-
ples shown in Section III, we can replace the PLD with
xs := ∗ ; ?xp − 0.5 ≤ xs ≤ xp + 0.5. We can prove a simu-
lation distance of 0.5 for the compromised system and the
genuine system, by constructing a derivation analogous to
the example one shown in Fig. 9. The key steps are (1)
choosing the appropriate programs and formulas in Fig. 10,
and (2) constructing new derivations for the three cases,
especially the ϕt2 case. In particular, the formula ϕ2 should be
34.5 ≤ xp1 ≤ 37.1 and the derivation for ϕ1 ⊢ [|((?ϕt2 ;P)

∗ ||
Q∗)ξ ⟩⟩ϕ2 is constructed using the multi-step invariant rule ∀∃-
MULTI with ϕinv = 0 ≤ xp1 − xp ≤ 0.5∧ 34.5 < xp1 < 37.1
into the obligation ϕinv ⊢ [|((?ϕt2 ;P) || Q∗)ξ ⟩⟩ϕinv . Then the
derivation proceeds by analysis of different cases of xp. More
details about this derivation can be found in the Appendix.
Scheduled Actuator Integrity Attack Consider such an attack
that can double the sc output by the controller, e.g., insert a
program sc := sc ∗ 2 after the ctrl program. Such an attack
would change the behavior of the water tank drastically. In
particular, under such an attack, both inc and dec modes
increase the salt level in the water tank. The derivation shown
in Fig. 11 can be similarly constructed, by considering the
worst-case scenario consists of two phases: (1) the compro-
mised system starts evolving around xp = 35 within the inc
mode with the maximum interval ϵ, and then (2) it continues
increasing the salt level within the dec mode until the time
START + DURATION + ϵ.

VIII. RELATED WORK

Robustness of safety of CPSs Robustness in CPSs can be
intended in several ways, which are classified by Fränzle et
al. [4] as follows: (i) input/output robustness; (ii) robustness
with respect to system parameters; (iii) robustness in real-time
system implementation; (iv) robustness due to unpredictable
environment; (v) robustness to faults. The notion of robustness
considered in this paper falls in category (iv), where the
attacks are the source of environment’s unpredictability. Other
works study robustness properties for CPSs [5], [30], [8], [6].
Some of them focus on robustness against attacks [5], [30],
even adopting quantitative reasonings [8], [6].

Our language-based notion of robustness shares similar-
ities with some existing notions of robustness, such as in-
variance [31] and input-to-state stability [32]. These notions
concern if a system stays in a safe region when small changes
happen to initial conditions, while our robustness concerns if
a system stays in a safe region when under attack.

Other language-based approaches to robustness can be
found in [7], [9], [21]. Xiang et al. [7], propose the notion of

robustness of safety for CPSs represented in dL, which consists
of the ability of the system to stay safe in the presence of
(unbound) sensor attacks. Chong et al. [9], [21], study a quan-
tified version of the robustness of safety proposed in [7], to
measure the impact of bounded sensor attacks targeting CPSs.
Our paper extends and generalizes the results in [9], [21] to a
timed setting, in the presence of timed attacks that can tamper
with both sensor measurements and/or actuator commands. In
particular, our proof system is more powerful than the one pro-
posed in [21] as it allows one to reason on generic forall-exist
relational properties in dL, and not only simulation distances.
Moreover, with the techniques we develop in Section VI-B, our
proof system provides novel ways to relationally reason with
the timing of dynamics, which is often lacking in prior work.

Relational reasoning for dL One key contribution of the work
is the framework for relational reasoning in the setting of dL.
Various approaches have been proposed to analyze specific
relational properties in dL. A primitive is introduced to express
a refinement relation between two hybrid programs [33]. An
expressive modal logic based on dL has been introduced to
reason with nondeducibility [34]. Neither work provides tool
support. Recent work by Xiang et al. develops a general
extension to dynamic logics and the extension supports au-
tomated and semi-automated verification of certain relational
properties [35]. Kolčák et al. introduce a relational extension of
dL that uses the technique of time re-parametrization to reason
about forall-forall on two dynamics without evolution con-
straint [27]. Our Proposition 5 extends their work to dynamics
with evolution constraints. The proof system, especially the
general proof rules, in our work is inspired by relational
program logic [22], [23], [24], most of which focus on forall-
forall relational properties and do not work on dL dynamics.
Some recent work investigate the alignment problem within
relational reasoning [36], [24], the results of which may be
encoded as more proof rules, which we leave to future work.

IX. CONCLUSION

We have introduced a formal framework for quantitative
analysis of the robustness of safety for CPSs under timed
attacks. We have defined a few time related properties and an
ad hoc notion of timed simulation distance to reason with these
properties. The centerpiece of the reasoning is a sound proof
system and techniques to reason with the timing of dynamics.

Our case study has shown promising results in using our
relational reasoning approach for the quantitative analysis of
non-trivial dynamics, while directly establishing quantitative
safety for either the genuine or the compromised system is
challenging. The full potential of the relational formulation
remains to be further explored.

Limitations The proof system and relevant results are designed
to promote verifying the forall-exists modality. One key result
is Proposition 5 that scales the time of one system to match
the time of the other. In certain systems, such a matching may
not always exist and the result won’t apply. Finding a forall-
forall alignment with a stretching function may be impossible.

12

One potential solution and relevant future work is to integrate
numerical solvers, e.g., dReal, to help identify that a matching
execution exists.

Future work An immediate future work is to automate and/or
optimize the forall-exists reasoning, by leveraging automated
tools like SMT solvers. Another interesting future work is to
enhance our quantitative analysis with stronger safety metrics,
and explore alternative distance measures that may better sup-
port relational reasoning. We also plan to explore more sophis-
ticated timed attacks, and in particular, periodic attacks, that
can achieve their malicious goals ensuring better stealthiness.

ACKNOWLEDGMENT

Ruggero Lanotte and Simone Tini received funding from the
European Union - Next-GenerationEU - National Recovery
and Resilience Plan (NRRP) – MISSION 4 COMPONENT
2, INVESTMENT N. 1.1, CALL PRIN 2022 D.D. 104 02-
02-2022 – MEDICA Project, CUP N. J53D23007180006.
Massimo Merro has been partially supported by the SERICS
project (PE00000014) under the MUR National Recovery and
Resilience Plan, funded by the EU - NextGenerationEU.

REFERENCES

[1] J. Giraldo, D. I. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, R. Candell, A Survey of Physics-Based
Attack Detection in Cyber-Physical Systems, ACM Comput. Surv. 51 (4)
(2018) 76:1–76:36.

[2] R. Lanotte, M. Merro, A. Munteanu, L. Viganò, A Formal Approach to
Physics-based Attacks in Cyber-physical Systems, ACM Transactions
on Privacy and Security 23 (1) (2020) 3:1–3:41.

[3] F. Arnold, H. Hermanns, R. Pulungan, M. Stoelinga, Time-Dependent
Analysis of Attacks, in: Principles of Security and Trust POST, Vol.
8414 of LNCS, Springer, 2014, pp. 285–305.

[4] M. Fränzle, J. Kapinski, P. Prabhakar, Robustness in cyber-physical
systems, Dagstuhl Reports 6 (9) (2016) 29–45.

[5] F. Hu, Y. Lu, A. V. Vasilakos, Q. Hao, R. Ma, Y. Patil, T. Zhang, J. Lu,
X. Li, N. N. Xiong, Robust cyber-physical systems: concept, models,
and implementation, Future Gener. Comput. Syst. 56 (2016) 449–475.

[6] M. Rungger, P. Tabuada, A notion of robustness for cyber-physical
systems, IEEE Trans. Autom. Control. 61 (8) (2016) 2108–2123.

[7] J. Xiang, N. Fulton, S. Chong, Relational analysis of sensor attacks on
Cyber-Physical Systems, in: CSF, IEEE, 2021, pp. 1–16.

[8] P. Tabuada, S. Y. Caliskan, M. Rungger, R. Majumdar, Towards robust-
ness for cyber-physical systems, IEEE Trans. Autom. Control. 59 (12)
(2014) 3151–3163.

[9] S. Chong, R. Lanotte, M. Merro, S. Tini, J. Xiang, Quantitative robust-
ness analysis of sensor attacks on cyber-physical systems, in: HSCC,
ACM, 2023, pp. 20:1–20:12.

[10] A. Giacalone, C. Jou, S. A. Smolka, Algebraic reasoning for probabilis-
tic concurrent systems, in: M. Broy, C. B. Jones (Eds.), Programming
concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3
Working Conference on Programming Concepts and Methods, Sea of
Galilee, Israel, North-Holland, 1990, pp. 443–458.

[11] A. Platzer, Differential dynamic logic for hybrid systems, Journal of
Automated Reasoning 41 (2) (2008) 143–189.

[12] A. Platzer, Logical foundations of cyber-physical systems, Vol. 662,
Springer, 2018.

[13] A. Platzer, A complete uniform substitution calculus for differential
dynamic logic, Journal of Automated Reasoning 59 (2) (2017) 219–265.

[14] G. Barthe, P. R. D’Argenio, T. Rezk, Secure information flow by self-
composition, in: CSF, 2004, pp. 100–114.

[15] T. Terauchi, A. Aiken, Secure information flow as a safety problem, in:
SAS, 2005, pp. 352–367.

[16] D. Kozen, Kleene algebra with tests, TOPLAS 19 (3) (1997) 427–443.
[17] G. E. Fainekos, G. J. Pappas, Robustness of temporal logic specifications

for continuous-time signals, Theoretical Computer Science 410 (42)
(2009) 4262–4291.

[18] S. Boyd, S. P. Boyd, L. Vandenberghe, Convex optimization, Cambridge
university press, 2004.

[19] M. Krotofil, A. A. Cárdenas, Resilience of Process Control Systems
to Cyber-Physical Attacks, in: NordSec, Vol. 8208 of LNCS, Springer,
2013, pp. 166–182.

[20] M. Krotofil, A. A. Cárdenas, J. Larsen, D. Gollmann, Vulnerabilities of
cyber-physical systems to stale data – Determining the optimal time to
launch attacks, International Journal of Critical Infrastructure Protection
7 (4) (2014) 213–232.

[21] J. Xiang, R. Lanotte, S. Tini, S. Chong, M. Merro, Measuring robustness
in cyber-physical systems under sensor attacks, Nonlinear Analysis:
Hybrid Systems 56 (2025) 101559.

[22] N. Benton, Simple relational correctness proofs for static analyses and
program transformations, in: POPL, 2004, pp. 14–25.

[23] H. Yang, Relational separation logic, Theoretical Computer Science
375 (1-3) (2007) 308–334.

[24] R. Nagasamudram, D. A. Naumann, Alignment completeness for rela-
tional hoare logics, in: LICS, 2021, pp. 1–13.

[25] A. Kabra, J. Laurent, S. Mitsch, A. Platzer, Cesar: Control envelope
synthesis via angelic refinements, in: TACAS, 2024, pp. 144–164.

[26] C. Chicone, Ordinary differential equations with applications, Vol. 34,
Springer Science & Business Media, 2006.

[27] J. Kolčák, J. Dubut, I. Hasuo, S.-y. Katsumata, D. Sprunger, A. Yamada,
Relational differential dynamic logic, in: TACAS, 2020, pp. 191–208.

[28] W. E. Boyce, R. C. DiPrima, Elementary differential equations and
boundary value problems, Wiley, 2012.

[29] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, A. Platzer, KeYmaera X:
An axiomatic tactical theorem prover for hybrid systems, in: CADE,
Vol. 9195 of LNCS, Springer, 2015, pp. 527–538.

[30] K. Huang, C. Zhou, Y. Tian, S. Yang, Y. Qin, Assessing the Physical
Impact of Cyberattacks on Industrial Cyber-Physical Systems, IEEE
Trans. Industrial Electronics 65 (10) (2018) 8153–8162.

[31] A. D. Ames, X. Xu, J. W. Grizzle, P. Tabuada, Control barrier function
based quadratic programs for safety critical systems, IEEE Transactions
on Automatic Control 62 (8) (2016) 3861–3876.

[32] A. A. Agrachev, A. S. Morse, E. D. Sontag, H. J. Sussmann, V. I.
Utkin, E. D. Sontag, Input to state stability: Basic concepts and results,
Nonlinear and optimal control theory: lectures given at the CIME
summer school held in Cetraro, Italy June 19–29, 2004 (2008) 163–
220.

[33] S. M. Loos, A. Platzer, Differential refinement logic, in: LICS, 2016,
pp. 505–514.

[34] B. Bohrer, A. Platzer, A hybrid, dynamic logic for hybrid-dynamic
information flow, in: LICS, 2018, pp. 115–124.

[35] J. Xiang, S. Chong, Extending dynamic logics with first-class relational
reasoning, in: NASA formal method symposium, 2025.

[36] R. Nagasamudram, A. Banerjee, D. A. Naumann, Alignment complete
relational hoare logics for some and all, arXiv preprint arXiv:2307.10045
(2023).

APPENDIX

A. Technical results and further examples from Section IV

The following two propositions hold:
Proposition 6. Jϕ⟨P ⟩[T1,T2]K∪Jϕ⟨P ⟩[T2,T3]K = Jϕ⟨P ⟩[T1,T3]K for
T1 ≤ T2 ≤ T3.
Proposition 7. Jϕ⟨P ⟩[T1,T2]K ⊆ Jϕ⟨P ⟩[T3,T4]K if T3 ≤ T1 ≤ T2 ≤
T4.

Our notion of safety obviously depends on the size on the
safety interval.
Proposition 8. If T-SAFE[T1,T2]

u1
(P , ϕpre, ϕpost) and also

T-SAFE[T3,T4]
u2

(P , ϕpre, ϕpost), for [T1,T2]⊆[T3,T4], then u2≤u1.

13

Furthermore, as expected, Definition 3 allows one to join
safety intervals taking the minimum value of safety.
Proposition 9. If T-SAFE[T1,T2]

u1
(P , ϕpre, ϕpost) and also

T-SAFE[T2,T3]
u2

(P , ϕpre, ϕpost) then, for u = min(u1, u2), we
have T-SAFE[T1,T3]

u (P , ϕpre, ϕpost).
Here, we provide further examples showing how we can

used our timed notions of safety, robustness and tolerance.
Example 2 (Scheduled DoS attack on sensor reading). Let
us focus on the attack described in Fig. 3 when the malware
is instantiated with the first payload, PLDDoS, to implement
a DoS attack on the reading of the measurements. We recall
that in the genuine system P ∗ the temperature oscillates in
the interval (99.5, 101]. In this example, we will reason in
the worst-case scenario, i.e., we assume that the attack starts
when the last temperature sensed by the controller was 100
degrees, while the real temperature has increased to 101
degrees. This scenario provides the maximum impact on the
safety and the robustness of the system under attack.
• Let us assume DURATION = 2. This means that the

malware is triggered until tg = START + 2 (this is the
last moment when the attack may have a go). In this
case, in the worst case scenario the plant takes 1 minute,
and at time START + 3 the temperature may reach 104
degrees because during the attack the controller will
keep sensing 100 degrees and it will not activate the
cooling system. When the attack is over, three minutes
after the START, the controller will sense the real (high)
temperature and it will activate the cooling system. The
robustness of the system under attack will be 1, at any
time T with T < START, and it will drop to 1

4 at any time
T ≥ START + DURATION + 1. The impact of the attack
on the system is 0 at any time T. More formally,
– T-ROBUSTT

1(ATT(P
∗), ϕpre, ϕpost), for any point in

time T, with 0 < T < START.
– T-ROBUSTT

1
4
(ATT(P ∗), ϕpre, ϕpost), for any point in

time T, with T ≥ START + DURATION + 1.
– For any T > 0, T-IMPACTT

0(ATT(P
∗), ϕpre, ϕpost).

Since the impact is zero and the robustness remains
positive, this means that the attack is tolerated by the
system without causing violations of the safety.

• Let us assume DURATION = 6. In this case, the
temperature of the engine under attack may reach 105
degrees after 4 minutes, and 108 degrees, after 7 minutes.
The robustness of the system under attack will be 1 at
any time T, with T < START, but it will drop to − 3

4 at
any time T ≥ START + DURATION + 1. In this case the
impact of the attack on the system will be 3

4 . Notice
that, since the cooling system is able to cool down the
system by 0.5 degrees per minute, when the attack will
terminate, the system will need 6 minutes to cool down
at 105 degrees towards safety. More formally,
– T-ROBUSTT

1(ATT(P
∗), ϕpre, ϕpost), for any point in

time T, with 0 < T < START.
– T-ROBUSTT

− 3
4
(ATT(P ∗), ϕpre, ϕpost), for any point in

time T, with T ≥ START + DURATION + 1.

– T-IMPACTT
3
4
(ATT(P ∗), ϕpre, ϕpost), for any point in

time T, with T ≥ START + DURATION + 1.
– T-TOLERANT

[0,T]
−3 (ATT(P), ϕpre, ϕpost, TH), where

TH = START+DURATION+1+6−(START+4) = 9, for
any point in time T, with T > START + DURATION +7.

The last statement says that the attack drags the system into
unsafe states for at most 9 time instants during the time
interval [START +4, START + DURATION +1+6], with an
(un)safety −3. However, after time START+DURATION+7
the system under attack recovers safety.

B. Proofs of results in Section V

We start with the proof of Theorem 1.

Proof of Theorem 1. We need to prove
T-SAFE[Tl,Tu]

u1
(ATT(P), ϕpre, ϕpost) for u1 ≥ u− d

where, by definition of timed safety, we know that
T-SAFE[Tl,Tu]

u1
(ATT(P), ϕpre, ϕpost) is equivalent to

u1 = inf{DistH(ν, JϕpostK) | ν ∈ Jϕpre⟨ATT(P)⟩[Tl,Tu]K}
for H ≡ VAR(ϕpost). Therefore, the proof obligation is
inf{DistH(ν, JϕpostK)|ν ∈ Jϕpre⟨ATT(P)⟩[Tl,Tu]K} ≥ u− d

(1)
Consider any state ν ∈ Jϕpre⟨ATT(P)⟩[Tl,Tu]K. The hypoth-

esis ATT(P) ⊑[Tl,Tu]
ϕpre,H,d P , with H = VAR(ϕpost), ensures

that there is some state ν′ ∈ Jϕpre⟨P ⟩K with ρH(ν, ν
′) ≤ d.

We can show that DistH(ν′, JϕpostK) ≥ u. Indeed, the hypoth-
esis T-SAFE[0,∞]

u (P , ϕpre, ϕpost) coincides, by definition, with
property

u = inf{DistH(ν, JϕpostK) | ν ∈ Jϕpre⟨P ⟩K}
from which we infer DistH(ν′, JϕpostK) ≥ u since ν′ ∈
Jϕpre⟨P ⟩K.

We distinguish the cases Jϕpre⟨ATT(P)⟩[Tl,Tu]K ⊆ JϕpostK
and Jϕpre⟨ATT(P)⟩[Tl,Tu]K ̸⊆ JϕpostK.

We start with case Jϕpre⟨ATT(P)⟩[Tl,Tu]K ⊆ JϕpostK.
Since ρH(,) is a metric, it is symmetric, thus implying

ρH(ν, ν
′) = ρH(ν

′, ν), and satisfies the triangular property. By
the triangular property we infer that for any state ν′′ ̸∈ JϕpostK,
it holds

ρH(ν
′, ν′′) ≤ ρH(ν

′, ν) + ρH(ν, ν
′′) (2)

By definition of DistH(ν′, JϕpostK) and the properties
DistH(ν′, JϕpostK) ≥ u and ν′′ ̸∈ JϕpostK we infer
ρH(ν

′, ν′′) ≥ u. From this inequality, property ρH(ν, ν
′) ≤ d

and Equation 2, we infer ρH(ν, ν
′′) ≥ u− d. By definition of

DistH(ν, JϕpostK) and the arbitrariness of ν′′ ∈ STA \ JϕpostK
we derive DistH(ν, JϕpostK) ≥ u−d. Then, by the arbitrariness
of ν in Jϕpre⟨ATT(P)⟩[Tl,Tu]K, we infer
inf{DistH(ν, JϕpostK) | ν ∈ Jϕpre⟨ATT(P)⟩[Tl,Tu]K} ≥ u− d

which coincides with the proof obligation Equation 1. This
completes the proof for case Jϕpre⟨ATT(P)⟩[Tl,Tu]K ⊆ JϕpostK.

Consider now the case Jϕpre⟨ATT(P)⟩[Tl,Tu]K ̸⊆ JϕpostK.
Since DistH(ν′, JϕpostK) ≥ u, we infer BH(ν′, u) ⊆

JϕpostK. Consider BH(ν, d − u + ϵ), for an arbitray ϵ > 0.

14

From ρH(ν, ν
′) ≤ d we derive BH(ν′, u)∩BH(ν, d−u+ ϵ) ̸=

∅. From this property and BH(ν′, u) ⊆ JϕpostK we infer
BH(ν, d−u+ ϵ)∩ JϕpostK ̸= ∅. By the arbitrarity of ϵ, we get
distH(ν, JϕpostK) = inf{ρH(ν, ν

′′) | ν′′ ∈ JϕpostK} ≤ d − u.
Namely, DistH(ν, JϕpostK) ≥ u− d. By the arbitrariness of ν
in Jϕpre⟨ATT(P)⟩[Tl,Tu]K, we infer
inf{DistH(ν, JϕpostK) | ν ∈ Jϕpre⟨ATT(P)⟩[Tl,Tu]K} ≥ u− d

which coincides with the proof obligation Equation 1. This
completes the proof.

Proof of Corollary 3.. By definition of timed tolerance, the
thesis T-TOLERANT(T,T3)

u2
(ATT(P), ϕpre, ϕpost, TH) follows by

• T-SAFE[T,T1]
u1

(ATT(P), ϕpre, ϕpost), with u1 > 0

• T-SAFE[T1,T2]
u2

(ATT(P), ϕpre, ϕpost), with u2 ≥ u− d

• T-SAFE[T2,T3]
u3

(ATT(P), ϕpre, ϕpost), with u3 > 0

• T2 − T1 ≤ TH.
The first of these statements follows by the hypothesis
T-SAFE[0,∞]

u (P , ϕpre, ϕpost), ATT(P) ⊑[T,T1]
ϕpre,H,d1 P and u −

d1 > 0, by applying Theorem 1 and choosing some u1 ≥ u−d1.
Then, the second stetement follows by the hypothesis
T-SAFE[0,∞]

u (P , ϕpre, ϕpost), and ATT(P) ⊑[T1,T2]
ϕpre,H,d2 P , by

applying Theorem 1 and choosing u2 ≥ u− d2.
Finally, the third statement follows by the hypothesis
T-SAFE[0,∞]

u (P , ϕpre, ϕpost), ATT(P) ⊑[T2,T3]
ϕpre,H,d3 P and u −

d3 > 0 by applying Theorem 1 and choosing u3 ≥ u− d3.
Finally, the last item coincides with an hypothesis.

Proof of Theorem 2. According to the definition of timed
semantics, for any ν ∈ Jϕpre⟨P ∗⟩[0,T]K, there is a state
ω ∈ JϕpreK such that (ω, ν) ∈ JP ∗K and 0 ≤ ν(tg) ≤ T.
By the nature of the global clock tg , we know 0 ≤ ω(tg) ≤ T.
That means (ω, ν) ∈ J(?0 ≤ tg ≤ T;P)∗K, which concludes
the proof.

C. Proofs of results in Section VI

Proof of Theorem 4. We present the proofs as follows:
• The soundness proofs for rules in Fig. 6 can be given by

adapting the arguments in the proof of Proposition 5 in
[21].

• For the rules for loops, we can prove the soundness of both
rules by induction on the iteration number of program P ∗.

• The rule ∀∃-loopN and rule ∀∃-loop* are sound as both
can be derived by unfolding the definition of ∀∃-modality,
and existing dL axioms and rules for Q∗ and ⟨ ⟩ .

• The rule ∀∃-ODE-∀ is sound because, given
[x′ = θ][ξ(x′ = θ)](ψ(tl, ξ(tl))→ϕ), we know that
for all solutions of x′ = θ and ξ(x′ = θ), their reachable
states satisfy ϕ when the condition ψ holds. And since
ψ only concerns time, and we have no constraints on the
time in the model of dynamics, there must exists states
where ψ holds.

• The rule ∀∃-ODE-I is sound because it is a special-
ized variant of the rule ∀∃-ODE-∀. A box modality

[x′ = θ, ξ(x′ = θ)]ϕ forces the two dynamics evolve for
the same duration. Thus, if [x′ = θ, ξ(x′ = θ)]ϕ holds,
then for any reachable state of x′ = θ, a solution of
ξ(x′ = θ) can reach a state so ϕ holds, by evolving for
the same duration as x′ = θ.

• For the rule ∀∃-ODE-G, if both promises hold, then that
means it holds that Γ ⊢ [x′ = θ, ξ(y′ = δ)&ϕx]ϕ, since
ξ(y′ = δ) doesn’t affect x′ = θ, then (follow the same
reasoning for the rule ∀∃-ODE-I) for any reachable state of
x′ = θ&ϕx, a solution of ξ(y′ = δ) can reach a state that
ϕ holds, by evolving for the same duration as x′ = θ&ϕx.

• The rule ∀∃-ODE-C is sound because it is a specialized
variant of the rule ∀∃-ODE-G.

That concludes the proof.

Proof of Proposition 4 Well-formedness: A timed dynamics
plant⟨T⟩ is well-formed if (1) tg ∈ VAR(plant), (2) tg ′ = 1
is the only program modifying tg , and (3) 0 ≤ T. From now
on, we only consider well-formed timed programs.

We first introduce useful tools. The following proposition
merges two sequentially evolving dynamics into a single one:
Proposition 10. For a program plant ≡ (x′ = θ, tg

′ = 1)&ϕ,
and timed programs plant⟨T1⟩ and plant⟨T2⟩ with time duration
T1 and T2, if the formula ϕ is time-invariant, then it holds that
Jplant⟨T1⟩; plant⟨T2⟩K = Jplant⟨T1+T2⟩K.

The proposition holds due to the flow property of au-
tonomous differential equations [26] and the evolution con-
straint being time-invariant.

The following proposition focuses on programs with per-
manent actions:
Proposition 11. For a program plant ≡ (x′ = θ, tg

′ = 1)&ϕ,
a permanent control action action, durations T1, T2, if the
constraint ϕ is time-invariant, then the following holds:

Jaction; plant⟨T1⟩; action; plant⟨T2⟩K = Jaction; plant⟨T1+T2⟩K

Now we can prove Proposition 4:

Proof. We consider two main cases of
(?T1 ≤ t ≤ T2 ; tl := 0; action; plant)∗: the first of
which is (?T1 ≤ t ≤ T2 ; tl := 0; action; plant)0, and the
second case is (?T1 ≤ t ≤ T2 ; tl := 0; action; plant)k for
k ≥ 1. The first case can be stated as: for any state
pair (ω, ω) ∈ J(?T1 ≤ t ≤ T2 ; tl := 0; action; plant)0K
(which is J?⊤K) and ω ∈ JϕK, we have that
(ω, ω) ∈ Jaction; plants⟨T2−T1+ϵ⟩K. The first case
holds since (1) (ω, ω) ∈ plants

⟨0⟩ for any state
ω ∈ JϕK, (2) Jplants⟨0⟩K ⊆ Jplants⟨T2−T1+ϵ⟩K, and (3)
(ω, ω) ∈ Jaction; plants⟨T2−T1+ϵ⟩K as action is permanent.

For the second case, we proceed by proving for every
state pair (ω, ν) ∈ J(?T1 ≤ t ≤ T2 ; tl := 0; action; plant)kK
that k ≥ 1, it holds that (ω, ν) ∈ Jaction; plants⟨T2−T1+ϵ⟩K.
We prove this case by induction on k. The base case is that
for every (ω, ν) ∈ J(?T1 ≤ t ≤ T2 ; tl := 0; action; plant)K,
it holds that (ω, ν) ∈ Jaction; plants⟨T2−T1+ϵ⟩K. From
the promise, by the semantics of timed programs, we
get (ω, ν) ∈ Jaction; plants⟨ϵ⟩K (analogous to Proposi-
tion 3). For the induction case, assume that the proposi-

15

· · · ⊢ ϕm

dL rules
ϵ ≤ ϵ

dL rules
· · · ⊢ [plant∞mi &(ϕ∧ ξ(ϕ))]ϕinv

dL rules
· · · ⊢ [plant∞mi](ϕ→ ξ(ϕ))

∀∃-ODE-C
· · · , (tl1 = 0) ⊢ [|(planti || planti)ξ ⟩⟩ϕinv

dL
· · · ⊢ [|(?⊤ || ctrl)ξ ⟩⟩[|(planti || plant)ξ ⟩⟩ϕinv

∀∃-;
· · · ⊢ [|(planti || Q)ξ ⟩⟩ϕinv

∀∃-LOOPN
ϕm, ϕt2 , tl = 0∧ϕsa ⊢ [|(planti || Q∗)ξ ⟩⟩ϕinv

∀∃-;-L and dL
ϕm ⊢ [|(?ϕt2 ;P || Q∗)ξ ⟩⟩ϕinv

∀∃-MR
· · · ⊢ [|(?⊤ || Q∗)ξ ⟩⟩[|(?ϕt2 ;P || Q∗)ξ ⟩⟩ϕinv

∀∃-;
· · · ⊢ [|(?ϕt2 ;P || Q∗;Q∗)ξ ⟩⟩ϕinv

∀∃-LOOP*
ϕcase, ϕinv , xs < 35 ⊢ [|(?ϕt2 ;P || Q∗)ξ ⟩⟩ϕinv

Fig. 13. Proof for the case ϕcase ≡ 34.5 ≤ xp < 35∧xs ≥ 35 (here, ϕm ≡ ϕcase ∧ϕinv ∧xs < 35∧xp1 < 35∧ 0 ≤ xp1 − xp ≤ 0.5,
ϕsa ≡ xp − 0.5 ≤ xs ≤ xp + 0.5, plant∞mi ≡ xp′ = r(1− xp/xL), tg

′ = 1, tl
′ = 1, ξ(xp′ = r(1− xp/xL)), ξ(tg

′ = 1), ξ(tl
′ = 1), and

ϕinv = 0 ≤ xp1 − xp ≤ 0.5∧ ∧ 34.5 < xp1 < 37)

tion holds for the count of iteration k. Consider a state
pair (ω, ν) ∈ J(?T1 ≤ t ≤ T2 ; tl := 0; action; plant)(k+1)K,
we know exists ν1 that (ω, ν1) ∈ Jaction; plants⟨T2−T1+ϵ⟩K
and (ν1, ν) ∈ J(?T1 ≤ t ≤ T2 ; tl := 0; action; plant)K. Due to
the test ?T1 ≤ t ≤ T2, we know T1 ≤ ω(t) ≤ T2 and T1 ≤
ν1(t) ≤ T2. Thus, we get (ω, ν1) ∈ Jaction; plants⟨T2−T1⟩K
as ν1 − ω ≤ T2 − T1. In addition, we know that (ν1, ν) ∈
J(action; plants⟨ϵ⟩K from the semantics of plant. Then, by
Proposition 11, we get (ω, ν) ∈ J(action; plants⟨T2−T1+ϵ⟩K.
That concludes the proof.

D. Additional proof derivations for the case study

The bounded sensor attack The main proof structure
for the simulation distance under this attack is the same
as shown in Fig. 9. The key difference is (1) choos-
ing the appropriate programs and formulas in Fig. 10,
and (2) constructing new derivations for the three cases,
especially the ϕt2 case. In particular, in this proof,
the formula ϕ2 should be 34.5 ≤ xp1 ≤ 37.1 and the
derivation for ϕ1 ⊢ [|((?ϕt2 ;P)

∗ || Q∗)ξ ⟩⟩ϕ2 is con-
structed using the multi-step invariant rule ∀∃-MULTI with
ϕinv = 0 ≤ xp1 − xp ≤ 0.5∧ ∧ 34.5 < xp1 < 37.1 into the
obligation ϕinv ⊢ [|((?ϕt2 ;P) || Q∗)ξ ⟩⟩ϕinv . Then the deriva-
tion proceeds by analysis of the following cases:
• xp < 34: this cannot happen due to conflicts with ϕinv .
• 34 ≤ xp < 34.5: we know that xp1 < 35 from ϕinv , so

both P and Q would set to increasing mode. Then xp1−xp
would monotonically decrease, but still positive. This is
because (xp1 −xp)′ = −(xp1 −xp)∗r/xL is a exponential
decay function.

• 34.5 ≤ xp < 35.5: Fig. 13 showcases this case. The in-
variant holds because the Q∗ can first reach a point close
to xp1 = 35 where 0 < xp1 − xp ≤ 0.5 holds, and
after that both P and Q would set to the same mode.
In particular, for the case of xs < 35, the Q∗ can first
reach to a point that xp1 < 35 and xp1 − xp ≤ 0.5, and
then both P and Q would set to increasing mode. For the
case of xs ≥ 35, the Q∗ reaches to xp1 = 35 first, which
means 0 < xp1 − xp ≤ 0.5 and both P and Q would then

set to decreasing mode. In both cases, xp1 − xp would
monotonically decrease but stay positive.

• 35.5 ≤ xp: both P and Q would then set to decreasing
mode. And again xp1 − xp would monotonically decrease
but still positive.

With the simulation distance being 0.5, the system is timed
robust for a δ ≥ 5− 0.5/5 = 0.9. The tolerance notion doesn’t
apply here as the system has never been in unsafe region.

16

	Introduction
	Preliminaries
	Hybrid Programs and Differential Dynamic Logic
	Distance Metrics

	A Threat Model for Timed attacks
	Scheduled Attacks
	Sensor attacks
	Actuator attacks

	Periodic Attacks
	Sensor attacks
	Actuator attacks

	Safety, Robustness, Attack Impact and Tolerance
	Extend dL with Timed Structure
	Timed Quantitative Safety
	Timed Quantitative Robustness and Attack Impact
	Timed Quantitative Attack Tolerance

	Establishing Timed Properties
	Timed Simulation Distance
	Reasoning about Timed Properties
	Proving Timed Simulation Distance via Untimed Distance

	Proving Untimed Distance
	A Proof System for -modality
	Reasoning with Timing of Dynamics

	Case Study: A Water Tank System
	Related Work
	Conclusion
	References
	Appendix
	Technical results and further examples from Section IV
	Proofs of results in Section V
	Proofs of results in Section VI
	Additional proof derivations for the case study

