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Abstract. Many important properties of computer systems are rela-
tional properties, which are often difficult to express and verify. Dynamic
logics are well-known formalisms for program verification. We present a
general extension, called the rel extension, of dynamic logics to support
first-class relational reasoning. The extension provides intuitive syntax
to express relational properties, which may be difficult or impossible to
express in the host dynamic logic. The rel extension can be instantiated
for different host logics. Verifying relational properties expressed by the
rel extension can benefit from techniques developed for general rela-
tional reasoning and domain-specific relational reasoning, and existing
tools developed for the host logic.
We validate the applicability of the rel extension by instantiating it for
a well-known dynamic logic: differential dynamic logic (dL). As a result,
the instantiation can express key relational properties that cannot be
easily expressed with dL. We develop an encoding for the instantiation to
leverage existing verification tools for dL. We conduct an experiment on
a set of benchmarks, and successfully verify a set of non-trivial relational
properties either fully or semi automatically.

Keywords: relational reasoning · dynamic logic · formal verification.

1 Introduction

Many important properties, such as noninterference [39], are relational proper-
ties [18], i.e., predicates over sets of pairs of executions. They are fundamental
properties but often harder to express and reason about than single-trace proper-
ties, as they require reasoning simultaneously about multiple executions. More-
over, there is less tool support for verification of relational properties, compared
to single-trace properties.

Dynamic logics are multi-modal logics widely used for verifying single-trace
properties of imperative programs [40, 1, 34, 28]. They are specified over a set
of programs α and a set of formulas ϕ. Program specifications are stated with
modality of necessity [α]ϕ that reads “after any execution of α, ϕ is true” and
modality of existence ⟨α⟩ϕ that reads “after some execution of α, ϕ is true”.
Different variants of dynamic logics have been introduced and used in different
application domains. For example, differential dynamic logic is developed for the
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safety of cyber-physical systems [37, 35], and linear dynamic logic is often used
for AI-based planning [20]. Various tools and techniques have been developed
for the verification of formulas expressed with these dynamic logics. However,
relational verification is often not well-explored across many of these application
domains. It would be beneficial if we can incorporate relational reasoning into
these dynamic logics and leverage existing tools for relational verification.

A lightweight yet efficient approach for expressing relational properties is ex-
tending the host logic with a biprogram construct [38, 6], which explicitly specifies
a pair of programs and thus allows reasoning about executions of the pair. We
argue that extending dynamic logics with a biprogram provides intuitive and
effective support for expressing relational properties. Elements from both pro-
grams can be directly used in expressing relational properties. Modalities can be
designed to quantify over executions of the program pair. As such, a dynamic
logic can be cleanly extended with first-class relational reasoning.

We contribute a general extension, called the rel extension, that builds upon
the biprogram construct to support first-class relational reasoning for different
dynamic logics. A rel extension has three major components3:
– rel programs that specify pairs of programs. A biprogram (α, β) can specify

a left program (i.e., α) and a right program (i.e., β), of the host logic.
– rel modalities that express executions of program pairs. They play the same

role as modalities in dynamic logics: express different quantifications over
executions of program pairs. For example, rel modality of necessity [| (α, β) |]ϕr
expresses that for all executions of α and β, ϕr holds at their last states.

– rel formulas that directly capture relational properties. For example, formula
(⌊x⌋L < ⌊x⌋R) → [| (α, β) |](⌊x⌋L < ⌊x⌋R)

specifies that any pair of executions of α and β preserves the natural order on
the values of x . (the projections ⌊·⌋L and ⌊·⌋R of variable x respectively refer
to its value in the left and right executions).
We design the rel extension in a general and abstract manner, by focusing

on the core constructs, i.e., programs and formulas, of all dynamic logics. It
can be instantiated for different host dynamic logics to support domain-specific
program constructs, i.e., constructs specific to the host logic. We conduct a case
study by instantiating the rel extension for differential dynamic logic (dL) [34,
36], a well-known logic for verifying safety of cyber-physical systems. The instan-
tiation is able to express key relational properties in a succinct way. Another case
study on linear dynamic logic on finite traces [20] (LDLf ), a logic used by the
AI community for reasoning about temporal constraints, can be found in the
extended version of this paper.

Verifying rel formulas specified by rel instantiations can benefit from ex-
isting verification tools. We introduce an encoding of rel formulas that permit
reusing existing tools to verify these formulas, inspired by the technique of self-
composition [8], which reduces relational verification of a program to standard

3 Color scheme: we use blue color for syntactic constructs of host logics, and red color
for those of the rel extension.
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verification of a composition of two copies of the program. We develop a sound
and complete encoding for the instantiation for dL.

The rel extension naturally combines the general program constructs and
domain-specific constructs, thereby promoting the verification of relational prop-
erties by integrating techniques for both general relational reasoning and domain-
specific relational reasoning, i.e., relational reasoning on host logic specific con-
structs, e.g., dL programs modeling system dynamics. To investigate the use-
fulness of rel extension in promoting verification, we conduct an experiment
on the instantiation for dL. We implement several variants of its encoding and
demonstrate that these variants can integrate techniques for general relational
reasoning as well as domain-specific relational reasoning. We test these variants
on a set of benchmarks and successfully verify all benchmarks using a theorem
prover developed for dL, with little to no manual effort. Some of the benchmarks
cannot be automatically verified by prior tools to our knowledge.

Contribution. The key contribution of this paper is the design and validation
of a general extension for dynamic logics to support lightweight yet effective first-
class relational reasoning. In particular, we make the following contributions:
– A lightweight extension for dynamic logics to support first-class relational

reasoning. Using the modalities, the rel extension can naturally and concisely
express relational properties involving mixed quantifications. We present a set
of practical example properties (Section 3).

– A case study that demonstrates the applicability of the rel extension. The
instantiation can express key domain-specific relational properties that are
difficult to express with the host logic (Section 4).

– An incrementally improvable encoding of rel formulas that can integrate
general relational reasoning and domain-specific reasoning. We experiment
with the encoding for dL on a set of benchmarks. The results are promising:
we can use an existing tool for dL to verify non-trivial relational properties,
with little to no manual effort. (Section 5).
Section 2 introduces the syntax and semantics of PDL. Section 6 discusses

related work and Section 7 concludes.

2 Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a subsystem of most, if not all, dynamic
logics. It extends propositional logic with modalities to reason about program
executions. The language of regular PDL has expressions of two sorts: (1) propo-
sitions or formulas and (2) programs. Its syntax is defined upon Π0, a set of
atomic programs, and Φ0, a set of atomic propositions. Programs and proposi-
tions are mutually inductively defined from the atomic ones as shown in Figure 1.
Programs include the operations of Kleene algebra with tests [30]: sequential
composition, nondeterministic choice, nondeterministic repetition, and test of a
formula. Formulas include the standard propositional connectives and program
necessity [α]ϕ. Program existence ⟨α⟩ϕ can be encoded with program necessity
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and vice versa, e.g., [α]ϕ = ¬⟨α⟩¬ϕ. Common abbreviations for logical connec-
tives apply.

Program: α, β ::= P ∈ Π0 | ?ϕ | α ; β | α∪β | α∗

Formula: ϕ, ψ ::= ⊤ | A ∈ Φ0 | ¬ϕ | ϕ ∧ ψ | [α]ϕ

Semantics of formulas ϕ, ψ
ω |= ⊤ iff ω ∈ W
ω |= A iff ω ∈ V(A)

ω |= ¬ϕ iff ω ̸|= ϕ

ω |= ϕ ∧ ψ iff ω |= ϕ and ω |= ψ

ω |= [α]ϕ iff ν |= ϕ for all states ν with (ω, ν) ∈ JαK
Semantics of programs α, β

JPK = R(P) for P ∈ Π0

J?ϕK = {(ω, ω) | ω |= ϕ}
Jα ; βK = {(ω, ν) | ∃µ, (ω, µ) ∈ JαK and (µ, ν) ∈ JβK}
Jα∪βK = JαK ∪ JβK

Jα∗K = JαK∗ the transitive, reflexive closure of JαK
Fig. 1: Syntax and Semantics of PDL

The semantics of PDL
formulas and programs is
interpreted over a Kripke
structure (W, R, V), where
W is a nonempty set of
states, R is a mapping from
the set Π0 of atomic pro-
grams into binary relations
on W, and V is a mapping
from the set Φ0 of atomic
propositions into subsets of
W. That is, R(P) ⊆ W×W
for P ∈ Π0, and V(A) ⊆
W for A ∈ Φ0. R and V
are extended inductively to
give meanings to all pro-
grams and formulas of PDL
as shown in Figure 1. We write ω |= ϕ if formula ϕ is true at state ω, i.e.,
ω ∈ V(ϕ). We write JαK to denote the semantics of α, i.e., if (ω, ν) ∈ JαK, then
there is an execution of α that starts in state ω and ends in state ν.

Relations and states in PDL are abstract, i.e., states in PDL are abstract
points and atomic programs in PDL are abstract binary relations. Such a level
of abstraction lets us focus on the fundamental design of the rel extension.

3 The rel Extension

This section introduces the design of the rel extension in the setting of PDL.
We present its syntax and semantics and then showcase example rel formulas.

3.1 Syntax and Semantics

The rel extension extends PDL with programs, modalities, and formulas, as
follows. It builds on Πr, a set of rel atomic programs, and Φr, a set of rel
atomic propositions. rel programs are analogous to PDL, with the addition of
a biprogram construct (α, β), where α and β specify two PDL programs to run,
respectively, by the left and right execution. The syntax of rel formulas is also
analogous to PDL, with the addition of projection formulas ⌊ϕ⌋B, which refers
to a PDL formula ϕ in one of the two executions specified by B ∈ {L, R}. The
rel modality of necessity [|αr |]ϕr can be used to encode the rel modality of
existence ⟨⟨αr ⟩⟩ϕr and vice versa, e.g., [|αr |]ϕr = ¬⟨⟨αr ⟩⟩¬ϕr.

The semantics of rel programs and formulas is interpreted over the seman-
tics of rel atomic programs Rr(Pr) (for Pr ∈ Πr) and rel atomic propositions
Vr(Ar) (for Ar ∈ Φr), as well as the semantics of PDL programs and formulas.
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Rr(Pr) is a transition relation between two pairs of states: if ((ωL, ωR), (νL, νR)) ∈
Rr(Pr), then an execution of the left program specified by Pr runs from ωL to
νL, and an execution of the right program of Pr runs from ωR to νR. Vr(Ar) is
a relation on states, i.e., Vr(Ar) ⊆ W × W for Ar ∈ Φr. Semantics of all rel
programs and formulas, as shown in Figure 2, is defined inductively from the
semantics of rel atomic programs and formulas, and the projection formulas. A
projection formula ⌊ϕ⌋B tests if PDL formula ϕ holds in the state specified by B

(left or right). rel modality of necessity [|αr |]ϕr holds in bi-state (ωL, ωR) if and
only if formula ϕr holds in any pairs of states that are reachable from (ωL, ωR) by
running αr. We write JαrKrl to denote the semantics of αr, and (ωL, ωR) |=rl ϕr if
the formula ϕr holds in bi-state (ωL, ωR).

rel program: αr, βr ::= Pr ∈ Πr | ?ϕr | αr ; βr | αr ∪βr | α∗
r | (α, β)

rel formula: ϕr, ψr ::= Ar | ¬ϕr | ϕr ∧ ψr | [|αr |]ϕr | ⌊ϕ⌋B (B ∈ {L, R})
Semantics of rel program αr βr

JPrKrl = Rr(Pr) for Pr ∈ Πr

J?ϕrKrl = {((ωL, ωR), (ωL, ωR)) | (ωL, ωR) |=rl ϕr}
Jαr ; βrKrl = {((ωL, ωR), (νL, νR)) | exists µ

L
, µ

R
that

((ωL, ωR), (µL
, µ

R
)) ∈ JαrKrl and ((µ

L
, µ

R
), (νL, νR)) ∈ JβrKrl}

Jαr ∪βrKrl = {((ωL, ωR), (νL, νR)) | JαrKrl ∪ JβrKrl}
Jα∗

r Krl = JαrK∗rl the transitive, reflexive closure of JαrKrl, where α0
r is (?⊤, ?⊤)

J(α, β)Krl = {((ωL, ωR), (νL, νR)) | (ωL, νL) ∈ JαK and (ωR, νR) ∈ JβK }
Semantics of rel formula ϕr ψr

Truth of formula ϕr in bi-state ωL, ωR, denoted (ωL, ωR) |=rl ϕr is defined as follows:
(ωL, ωR) |=rl Ar iff (ωL, ωR) ∈ Vr(Ar)

(ωL, ωR) |=rl ¬ϕr iff (ωL, ωR) ̸|=rl ϕr

(ωL, ωR) |=rl ϕr ∧ ψr iff (ωL, ωR) |=rl ϕr and (ωL, ωR) |=rl ψr

(ωL, ωR) |=rl [|αr |]ϕr iff ∀ νL, νR that ((ωL, ωR), (νL, νR)) ∈ JαrKrl, (νL, νR) |=rl ϕr holds
(ωL, ωR) |=rl ⌊ϕ⌋B iff ωL |= ϕ when B = L or ωR |= ϕ when B = R

Fig. 2: Syntax and semantics of rel programs and formulas

3.2 Quantification over Executions

Expressing relational properties often involves quantifications over executions,
e.g., for all executions of a program α, there exists an execution of β that gets the
same results. We can use rel formulas to easily and succinctly express all quan-
tifications over two executions by using (and mixing) the necessity and existence
modalities, as shown below. We write σα (or σβ) to denote an execution of pro-
gram α (or β) and σα[-1] to denote the last state of σα. The first two entries show
how to encode quantifications without alternations. The other four show how to
encode quantifications with alternations, by combining the biprogram construct
and a special program ?⊤ (i.e., skip in common programming languages). For
example, forall, exists, i.e., ∀σα ∃σβ is encoded as [| (α, ?⊤) |]⟨⟨(?⊤, β)⟩⟩, where the
modality [| (α, ?⊤) |] quantifies over executions of program α, and the modality
⟨⟨(?⊤, β)⟩⟩ quantifies over executions of program β.
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∀σα ∀σβ.((σα[-1], σβ [-1]) |=rl ϕr) ≡ [| (α, β) |]ϕr

∃σα ∃σβ.((σα[-1], σβ [-1]) |=rl ϕr) ≡ ⟨⟨(α, β)⟩⟩ϕr

∀σα ∃σβ.((σα[-1], σβ [-1]) |=rl ϕr) ≡ [| (α, ?⊤) |]⟨⟨(?⊤, β)⟩⟩ϕr

∀σβ ∃σα.((σα[-1], σβ [-1]) |=rl ϕr) ≡ [| (?⊤, β) |]⟨⟨(α, ?⊤)⟩⟩ϕr

∃σα ∀σβ.((σα[-1], σβ [-1]) |=rl ϕr) ≡ ⟨⟨(α, ?⊤)⟩⟩[| (?⊤, β) |]ϕr

∃σβ ∀σα.((σα[-1], σβ [-1]) |=rl ϕr) ≡ ⟨⟨(?⊤, β)⟩⟩[| (α, ?⊤) |]ϕr

Fig. 3: Encoding of quantifications

Notation: For brevity,
we write [|(α, β)⟩⟩ϕr and
⟨⟨(α, β) |]ϕr for formulas
[| (α, ?⊤) |]⟨⟨(?⊤, β)⟩⟩ϕr, and
⟨⟨(α, ?⊤)⟩⟩[| (?⊤, β) |]ϕr re-
spectively from now on.
We can design other syn-
tactic sugar to further im-
prove the usability of rel.

3.3 Expressing Relational Properties

The rel extensions express relational properties intuitively. We show some inter-
esting examples here. Some examples involve syntax more than PDL, but their
meanings can be easily inferred. Note that example properties shown here are
general: they can be similarly expressed in most dynamic logics.
Refinement Relation. A program α refines another program β if the behaviors
of β subsume those of α. That is, all states reachable from a state ω by following
a transition of α could also be reached from ω by following some transitions of
β. Such a property can be encoded using the ∀σα,∃σβ quantification:

(⌊A⌋L ↔ ⌊A⌋R) → [|(α, β)⟩⟩(⌊A⌋L ↔ ⌊A⌋R)

Where programs α and β refer to the same set of atomic propositions and pro-
grams. The formula (⌊A⌋L ↔ ⌊A⌋R) is a shorthand for

∧
i∈1...n (⌊Ai⌋L ↔ ⌊Ai⌋R),

which encodes that the left and right states are identical.
Noninterference. Noninterference [39, 25] is a well-known strong information
security property that guarantees that public outputs of a system do not re-
veal any confidential information (i.e., confidentiality), or dually that untrusted
inputs of a system do not modify trusted contents (i.e., integrity). Noninterfer-
ence has various variants, especially in a language that involves nondeterminism.
Here, we express a few variants.

First, a common notion of noninterference for confidentiality of a determinis-
tic program ensures that attackers who have access to the program’s low-security
input and output won’t be able to infer the program’s high-security input. In-
tuitively, the property states that for any executions of a deterministic program
α receiving the same low-security inputs, they should produce the same low-
security outputs. Such a noninterference notion is a ∀ ∀ property:

(⌊Ain⌋L ↔ ⌊Ain⌋R) → [| (α, α) |](⌊Aout⌋L ↔ ⌊Aout⌋R)

Where atomic propositions Ain and Aout represent, respectively, low-security
inputs and outputs of α. The modality [| (α, α) |] ensures that α produces the same
low-security output if the same low-security input is received.

Various forms of noninterference can be defined when α has nondeterminism.
One of them is possibilistic noninterference [39] or nondeducibility [2], which
states that an attacker cannot infer confidential information for certain in a
program with non-observable nondeterminism. Intuitively, the attacker cannot
observe the nondeterministic choices made by program α, so the attacker is not
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certain if the information received is confidential. Such a noninterference notion
can be expressed with the forall, exists quantifications over executions of α, i.e.,

(⌊Ain⌋L ↔ ⌊Ain⌋R) → [|(α, α)⟩⟩(⌊Aout⌋L ↔ ⌊Aout⌋R)

To properly reason about two executions in the presence of nondeterminism,
some variants of noninterference require (some of) the nondeterminism in the
two executions to resolve in the same way [48]. For example, a nondeterministic
choice in a program may represent a user’s decision, which is assumed to be
public input, and so the resolution of the nondeterministic choice should be
the same in both executions. Under such circumstances, we can use the rel
nondeterministic choice, i.e., αr ∪βr, to express that two executions take the
same choice. The following formula shows an example of such a noninterference,
where αr is ((?Ain ; ?Aout , ?Ain ; ?Aout)) and βr is ((?¬Aout , ?¬Aout)):

(⌊Ain⌋L ↔⌊Ain⌋R) → [|αr ∪βr |](⌊Aout⌋L ↔⌊Aout⌋R)

This formula holds: two executions with the same nondeterministic choice,
i.e., either the first branch or the second, would lead to the same value of Aout .

Lock-step Properties. Note that the semantics of α∗
r means the left and right

programs specified in αr would always loop for the same number of iterations.
Combining it with other constructs, we can express interesting relational proper-
ties on loops that involve lock-step. For example, the following formula expresses
a relational invariant of a loop with a biprogram. In particular, an invariant ϕinv
holds at the end of every loop iteration of (α, β)∗: ϕinv → [| (α, β) |]ϕinv .

Loop Alignments. As shown in prior work, verifying relational properties on
loops may require careful alignment in executing the left and right loops. The
rel extension can readily and clearly express these alignments. Consider the
example (DoubleSquare) adapted from [41, 3] on integers x , y , and z :

⌊x⌋L=⌊x⌋R→ [|y := 0 ; (z := 2x , z := x ); (body∗, body∗) |]

[| (?z ≤ 0, ?z ≤ 0); (?⊤, y := 2y) |]⌊y⌋L =⌊y⌋R

Where body ≡ ?z ≥ 0; z := z − 1; y := y + x . An effective alignment for ver-
ifying this property can be expressed as a formula that replaces (body∗, body∗)
with (body ; body , body)∗ which aligns two loop iterations of the left execution
with one iteration of the right.

For general ∀ ∀ formulas of the form [| (body∗, body∗) |]ϕr, we can express the
alignments required for verifying such a formula in a general manner, as follows:

[| (?Gb; (body , body)∪ ?Gl ; (body ,⊤)∪ ?Gr ; (⊤, body))∗ |]ϕr

Where formulas Gb, Gl , and Gr specify the conditions for executing, respec-
tively, both the left and right loops, the left loop only, and the right loop only.
For example, we can get an effective alignment for verifying the example above
by letting Gb ≡ ⌊x⌋L=⌊x⌋R, Gl ≡ ⌊x⌋L≥⌊x⌋R, Gr ≡ ⌊false⌋L∧⌊false⌋R.

Motion Planning. The rel extension can intuitively express many relational
properties on motion planning or path finding, e.g., for driving or robots. For
example, an important property in motion planning is finding the optimal path
(of all possible paths). Given a control system modeled as α, the following ∃ ∀
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formula specifies that an optimal path exists (the left execution arrives no-later
than all possible executions):

(⌊ϕ⌋L∧⌊ϕ⌋R)→⟨⟨(α, α) |](⌊ψ⌋R→⌊ψ⌋L)

Where ⌊ϕ⌋L∧⌊ϕ⌋R specifies that both executions start at the same location,
and ⌊ψ⌋R→⌊ψ⌋L specifies that the left execution arrives no-later than other execu-
tions of α. We can further express useful variants of this property. For example,
an optimal path may exist only if certain actions are triggered:

(⌊ϕ⌋L∧⌊ϕ⌋R)→⟨⟨((α1; β; α2), α) |](⌊ψ⌋L→⌊ψ⌋R)

Where β specifies these actions. And α1 and α2 respectively model possible
actions the system can take before and after β.

4 Case Study: Differential Dynamic Logic

This section presents a case study of the rel extension on differential dynamic
logic [34, 37, 36] (dL), a well-known first-order dynamic logic that enables veri-
fying high-level cyber-physical systems models featuring real arithmetic, nonde-
terminism, and differential equations. Programs in dL are referred to as hybrid
programs [37]. They are a formalism for modeling systems that have both contin-
uous and discrete behaviors. Hybrid programs can express continuous evolution
(as differential equations) as well as discrete transitions.

Figure 4 shows the syntax of constructs that dL add over PDL and their se-
mantics. Variables are real-valued and can be deterministically assigned (x := θ,
where θ is an arithmetic term) or nondeterministically assigned (x := ∗). The
hybrid program x ′= θ&ϕ expresses the continuous evolution of variables x : given
the current value of variable x , the system follows the differential equation x ′= θ
for some (nondeterministically chosen) amount of time so long as the formula
ϕ, the evolution domain constraint, holds for all of that time. Note that x can
be a vector of variables and then θ is a vector of terms of the same dimension.
Atomic formulas of dL are comparisons of terms, i.e., (θ ∼ δ).

Similar to PDL, the semantics of dL [34, 36] is a Kripke semantics where the
Kripke model’s worlds are the states of the system. Let R denote the set of real
numbers and V denote the set of variables. A state is a map ω : V 7→ R assigning
a real value ω(x ) to each variable x ∈ V. The set of all states is denoted by Sta.

With dL, we are often interested in formulas of the form ϕpre → [α]ϕpost :
if ϕpre is true then ϕpost holds after any possible execution of α. The hybrid
program α often has the form (ctrl ; plant)∗, where ctrl models atomic actions
of the control system and does not contain continuous parts (i.e., differential
equations); and plant models the evolution of the physical environment and has
the form of x ′= θ&ϕ. That is, the system is modeled as unbounded repetitions
of a controller action followed by an update to the physical environment.

Consider, as an example, an autonomous vehicle that needs to stop before
hitting an obstacle [37]. Figure 5 shows a dL model of such an autonomous
vehicle. Let d be the vehicle’s distance from the obstacle. The desired safety
condition (ϕpost) is that d is positive, i.e., not hitting the obstacle. Let v and
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Semantics of dL terms θ, δ::= x | c | θ ⊕ δ

ωJxK = ω(x ) and ωJcK = c

ωJθ ⊕ δK = ωJθK ⊕ ωJδK (⊕ denotes arithmetic for ⊕ ∈ {+,×} )
Semantics of dL programs α, β::= x := θ | x := ∗ | x ′= θ&ϕ | · · ·

Jx := θK = {(ω, ν) | ν(x ) = ωJθK and for all other variables y ̸= x , ν(y) = ω(y)}
Jx := ∗K = {(ω, ν) | ν(y) = ω(y) for all variables y ̸= x}

Jx ′= θ&ϕK = {(ω, ν) | exists a solution φ : [0, r ] → Sta of x ′ = θ with φ(0) = ω,
φ(r) = ν, and φ(t) |= ϕ for all t ∈ [0, r ]}

Semantics of dL formulas ϕ, ψ::= θ ∼ δ | ∀ x . ϕ | · · ·
ω |= θ ∼ δ iff ωJθK ∼ ωJδK (∼ denotes comparison for ∼ ∈ {=,≤, <,≥, >}
ω |= ∀ x . ϕ iff ν |= ϕ for all states ν that agree with ω except for the value of x
Fig. 4: Syntax and semantics of dL programs and formulas in addition to PDL

a be the vehicle’s velocity and acceleration. Let t be the time elapsed since
the controller was last invoked. The program plant describes how the physical
environment evolves over time interval ϵ: distance changes according to −v (i.e.,
d ′= −v), velocity changes according to the acceleration (i.e., v ′= a), and time
passes at a constant rate (i.e., t ′= 1). The differential equations evolve within
the time interval t ≤ ϵ and if v is non-negative (i.e., v ≥ 0).

ϕpre ≡ A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2

ϕpost ≡ d > 0

ψ ≡ 2Bd > v2 + (A+ B)(Aϵ2 + 2vϵ)

accel ≡ ?ψ ; a := A

brake ≡ a := −B

ctrl ≡ (accel ∪ brake) ; t := 0

plant ≡ d ′= −v , v ′= a, t ′= 1&(v ≥ 0 ∧ t ≤ ϵ)

ϕsafety ≡ ϕpre → [(ctrl ; plant)∗]ϕpost

Fig. 5: dL model of an autonomous vehicle

The hybrid program ctrl mod-
els the vehicle’s controller. The
vehicle can either accelerate at
A or brake at −B . The con-
troller chooses nondeterministi-
cally between these options. Pro-
grams accel and brake express the
controller accelerating or braking.
The controller can accelerate only
if ψ is true, which captures that

the vehicle can accelerate for the next ϵ seconds only if doing so would still allow
it to brake in time. The formula to be verified is ϕsafety . Given a precondition
ϕpre , the axioms and proof rules of dL can be used to prove the safety condition
ϕpost . The theorem prover KeYmaera X [23] provides tool support.

4.1 dLrel: A rel Instantiation for dL

We build dLrel, a rel instantiation for dL. dLrel instantiates the atomic pro-
grams and formulas of the rel extension with constructs designed for dL. The
syntax and semantics of these constructs are shown in Figure 6. (We omit the
other constructs shown in Figure 2.) The relational atomic programs, i.e., Pr, in
dLrel are a relational version of deterministic assignment (x := θ), nondetermin-
istic assignment (x := ∗), and continuous evolution (x ′= θ&ϕ). The relational
atomic formulas, i.e., Ar, in dLrel are comparisons of dLrel terms, i.e., θr∼ δr.
A dLrel term can be either a projection term: ⌊θ⌋B, which refers to a dL term θ
in one of the two executions specified by B ∈ {L, R}, or an arithmetic operation
of two dLrel terms, i.e., θr⊕ δr.
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Semantics of dLrel term: θr, δr ::= ⌊θ⌋B | θr⊕ δr
(ωL, ωR)J⌊θ⌋BKrl = ωLJθK if B = L or ωRJθK if B = R

(ωL, ωR)Jθr⊕ δrKrl = (ωL, ωR)JθrKrl ⊕ (ωL, ωR)JδrKrl (⊕ denotes arithmetic for ⊕ ∈ {+,×}
Semantics of dLrel program: αr, βr ::= x := θ | x := ∗ | x ′= θ&ϕ | · · ·

Jx := θKrl = J(x := θ, x := θ)Krl
Jx := ∗Krl = J(x := ∗, x := ∗) ; ?(⌊x⌋L = ⌊x⌋R)Krl

Jx ′= θ&ϕKrl = J(t := 0, t := 0) ; (x ′= θ, t ′= 1&ϕ, x ′= θ, t ′= 1&ϕ) ; ?(⌊t⌋L = ⌊t⌋R)Krl
Semantics of dLrel formula: ϕr, ψr ::= θr∼ δr | · · ·
(ωL, ωR) |=rl θr∼ δr iff (ωL, ωR)JθrKrl ∼ (ωL, ωR)JδrKrl (∼ is arithmetic comparison of ∼)
Fig. 6: Syntax and semantics of dLrel programs and formulas in addition to rel

Semantically, program Jx := θKrl indicates that the same deterministic as-
signment is run by the left and right executions. The program Jx := ∗Krl ensures
both executions having the same value for variable x . Jx ′= θ&ϕKrl enforces a
constraint that the durations used by the physical evolution in both executions
are the same (i.e., ?(⌊t⌋L = ⌊t⌋R) where t is a fresh continuous variable added
into both executions). Such a design is useful since we often want to compare
executions of two systems only if they execute for the same period of duration.

ψ ≡ 2Bd > v2 + (A+ B)(Aϵ2 + 2vϵ)

accel ≡ (?ψ, ?ψ) ; a := A

brake ≡ a := −B

ctrl t ≡ ( (?temp > T ; thermo := −1)

∪ (?temp < T ; thermo := 1)

∪ (?temp = T ) )

ctrl ′t ≡ ( (?temp > T ; thermo := −2)

∪ (?temp < T ; thermo := 2)

∪ (?temp = T ) )

ctrlv ≡ (accel ∪ brake) ; t := 0

plant ≡ d ′=−v , v ′= a, t ′=1, temp′= thermo

& (v ≥ 0 ∧ t ≤ ϵ)

ϕr ≡ (⌊d⌋L = ⌊d⌋R ∧ ⌊v⌋L = ⌊v⌋R)

ϕrobust ≡ ϕr → [| ((ctrl t , ctrl
′
t); ctrlv ; plant)

∗ |]ϕr

Fig. 7: A dLrel example on robustness

Figure 7 shows examples of
dLrel programs and formulas
adapted from existing work [48].
It presents a design of an au-
tonomous vehicle with velocity
control and interior temperature
control. Its velocity control is the
same as the example presented in
Figure 5. For temperature con-
trol, the vehicle detects the inte-
rior temperature (temp), and then
chooses one of the two control
modes, specified respectively in
program ctrl t and ctrl ′t . Here, both
modes compare the current tem-
perature with a target tempera-

ture T , and then set the thermostat accordingly. The modes differ only in the
values of thermo. The temperature changes according to thermo.

A system designer may want a robust velocity control, i.e., the choice of modes
for temperature control won’t interfere with the vehicle’s control of velocity. This
relational property is expressed as a dLrel formula at the last line (i.e., ϕrobust).
Intuitively, the formula says for two runs of the vehicle, that have different
modes of temperature control, if the vehicle starts with the same position and
velocity (the premise ϕr of the implication), makes the same control decisions for
acceleration and brake (ctrlv ), and runs for the same duration (plant), it would
end with the same position and velocity (the conclusion ϕr of the implication).
The validity of this formula suggests that the vehicle has robust velocity control.
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Expressing such a relational property with dLrel is straightforward and much
more succinct than the original version [48].

We investigate the expressive power of dLrel and prove that it is equally
expressive as dL, stated with the following theorem:

Theorem 1. dLrel and dL are equally expressive.

The theorem holds as every dL formula can be encoded as an equivalent dLrel
formula and vice versa. We prove this equivalence by constructing a sound and
complete encoding of dLrel in dL in Section 5. Such a dLrel design promotes
verification, as all dLrel formulas can be verified using the tools for dL and
leverage their future advances.

Note that it’s possible to make a different design so dLrel is more expres-
sive. For example, we could introduce new atomic relational program constructs
that cannot be expressed with dL. For example, recent work [14, 49] introduce
a notion of simulation distance in the setting of dL, a relational property that
quantitatively captures the behavior distance between two dL programs. The no-
tion requires calculating the infimum of distances between a reachable state of
one program to the set of reachable states of another program. We can add a new
atomic relational formula to help express such a relational property, and such a
atomic construct cannot be expressed with dL due to the infimum calculation.

5 Verification Techniques

Verifying rel formulas benefits from existing tools. To explore this benefit, we
introduce an encoding that transforms rel formulas into formulas of the host
logic, so existing tools and techniques developed for the host logic can be reused.
The encoding can integrate verification techniques for general relational reason-
ing as well as domain-specific reasoning. Thanks to the integration, it promotes
automated verification of relational properties, especially domain-specific ones.
To demonstrate its usefulness, we conduct an experiment with the encoding for
dLrel on a set of benchmarks. The results show that we can verify the bench-
marks with an existing tool developed for dL, with little to no manual effort.

5.1 Host Logic Encoding

The encoding is inspired by self-composition [22, 8, 45, 33], a proof technique
often used for proving noninterference for deterministic programs. We explain
self-composition first, and then introduce the encoding in the setting of dLrel.
Self-Composition. To develop an intuition for how the self-composition tech-
nique is used to prove noninterference, consider the problem of checking whether
low-security outputs of a deterministic program reveal high-security inputs. Con-
struct two copies of the program, renaming the program variables so that the
variables in the two copies are disjoint. Set the low-security inputs in both copies
to identical values but allow the high-security inputs to take different values.
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Now, sequentially compose these two programs together. If the composed pro-
gram can terminate in a state where the corresponding low-security outputs
differ, then the original program does not satisfy noninterference; conversely,
if in all executions of the composed program, the low-security outputs are the
same, then the original program satisfies noninterference. Intuitively, the com-
position of the two copies allows a single program to represent two executions
of the original program, reducing checking a relational property of the original
problem to checking a safety property of the composed program.

Using the insights, our encoding for dLrel builds on two steps: (1) renaming
a dLrel formula into an equivalent one whose left and right programs use disjoint
variables, and (2) making a composition of the two programs.
Renaming dLrel Formulas. To help with renaming, we define renaming func-
tions that map all variables accessible by the right execution/program to fresh
variables. We write ξ(ϕr) for the formula identical to ϕr but whose variables
accessible by the right execution have been renamed according to ξ. Renaming
functions similarly apply to dLrel programs. We also write ξ(ω) for the state
identical to ω but whose domain variables have been renamed according to ξ.
A translation from dLrel to dL. We develop a function π that will be used
to transform renamed dLrel formulas, i.e., ξ(ϕr), into an equivalent dL formula.
A key step of π is to convert the biprogram construct (α, β) into a composition
of α and β. Also, it directly extracts the contents from all projection constructs,
e.g., ⌊ϕ⌋B and ⌊θ⌋B. The π is defined as follows:

Definition 1 (π for dLrel). For a dLrel formula ϕr whose variables for the left
and right executions are disjoint (i.e., VarL(ϕr) ∩ VarR(ϕr) = ∅), a function π
that can transform a dLrel formula ϕr (or a dLrel program αr) to an equivalent
dL formula (or program), is defined inductively as follows.

π(θr∼ δr) = π(θr) ∼ π(δr) π(αr ; βr) = π(αr) ; π(βr)

π(¬ϕr) = ¬π(ϕr) π(αr ∪βr) = π(αr)∪π(βr)
π(ϕr ∧ ψr) = π(ϕr) ∧ π(ψr) π(?ϕr) = ?π(ϕr)

π([|αr |]ϕr) = [π(αr)]π(ϕr) π(α∗
r ) = (π(αr))

∗

π(⌊ϕ⌋B) = ϕ π((α, β)) = α ; β
And π(θr) on terms is inductively defined:

π(⌊θ⌋B) = θ π(θr⊕ δr) = π(θr) ⊕ π(δr)

With a renaming function ξ, we can encode a dLrel formula ϕr as π(ξ(ϕr)).

Theorem 2 (Soundness and completeness of the encoding for dLrel).
For states ωL ωR, a dLrel formula ϕr, and a renaming function ξ for ϕr,

(ωL, ωR) |=rl ϕr iff ((ωL ⇓ VarL(ϕr))⊗ (ξ(ωR ⇓ VarR(ϕr)))) |= π(ξ(ϕr))
Where ω ⇓ V denotes the projection of state ω on a set of variables V : the map
{x 7→ ω(x )} for all x ∈ V , and ⊗ means the join of two non-overlapping states.

The proof can be done by simultaneous induction on ϕr and αr.
Verifying dLrel Formulas with existing tools. With Theorem 2, we can
verify a dLrel formula ϕr by verifying a dL formula π(ξ(ϕr)), which can be done
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with the theorem prover KeYmaera X [23]. We encode the example shown in
Figure 7 (ϕrobust in particular) as a dL formula π(ξ(ϕrobust)), which KeYmaera
X is able to prove fully automatically.

Note that π sequentially composes the left and right programs, i.e., π((α, β)) =
α ; β. Though the encoding based on π is sound and complete, it may be chal-
lenging to directly verify certain dLrel formulas with this encoding. We discuss
next how to improve π by integrating techniques for both general relational
reasoning and domain-specific relational reasoning.

5.2 Integrating Techniques in the Encoding

A rel instantiation like dLrel naturally blends general relation constructs and
domain-specific constructs, e.g., [|(x ′= θ&ϕ, y ′= δ&ψ)⟩⟩(⌊x⌋L≤⌊y⌋R) expresses a
forall, exists property on two differential equations. The integration opens great
opportunities to utilize advances in both general relational reasoning and domain-
specific relational reasoning. Using dLrel as an example, we show how to improve
the verification power by retrofitting the encoding π with various techniques.

In particular, we develop four variants of π, each with increasing verification
power, achieved by incorporating additional heuristics in π. We either develop
these heuristics or adapt them from prior work. We test these variants on a set
of benchmarks, by (1) applying these variants on the benchmarks to generate
dL formulas, and then (2) use the theorem prover KeYmaera X to verify the
generated formulas. Figure 8 shows the benchmarks and the results.

Benchmarks
Variants

π πalign π∀∃ πode πsyn

Fig.7 (Fig.8 in [48]) A A A A A
Ex.2.1 in [3] S S S S
Ex.2.4 in [3] A A A A A
Ex.7.4 in [3] A A A A A
Ex.7.5 in [3] A A A
Ex.7.6 in [3] A A A

Ex.1 A A
Fig.8 in [49] S S
Cs.1 in [29] UA
Cs.2 in [29] UA

Fig. 8: Using variants of π to verify non-
trivial relational properties. For notation,
Ex. and Cs. respectively denote the example
properties and case studies in the cited work.
Table cells indicate how much automation
KeYmaera X can verify the generated dL
formulas. Notations A, S, and UA mean, re-
spectively, fully automated, automated with
less than 3 manual proof steps, and auto-
mated after user inputs.

Benchmarks. The benchmarks
include a set of example prop-
erties from this paper and some
existing work. In particular, we
collect many motivating examples
from [3], as it focuses on Kleene
Algebra with Tests, which is di-
rectly relevant to dynamics logics.
We are able to verify all exam-
ples from [3], except for two exam-
ples that require native support
of integers (Ex.2.2) and arrays
(Ex.2.3), which are not natively
supported by KeYmaera X. In ad-
dition, we verify a few other rep-
resentative and non-trivial case
studies from existing work.

We elaborate on the four vari-
ants of π and their correspond-
ing results. Note that, as shown
in Figure 8, the default π can au-
tomatically verify three of these
benchmarks.
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πalign : π + heuristics on alignment. As shown by existing work [3, 41], ver-
ifying relational properties often requires effective alignment of programs and
computations so that relational invariants can be easier specified. Consider the
following property from existing work [3] written in dLrel:

⌊n⌋L=⌊n⌋R→[| i := n ; r := 1 |][| (body∗, body∗); (?i = 0, ?i = 0) |]⌊r⌋L = ⌊r⌋R

Where body ≡ ?i ̸= 0; r := r × i ; i := i − 1. An effective alignment for verifying
this property is to rewrite (body∗, body∗) into (body , body)∗ which run the left
and right executions in lockstep. We develop πalign that adds into π a heuristic
that encodes a proof rule from existing work (Rule (3) from [3]) that soundly
performs such a rewrite. Apply πalign to the property above produces a dL
formula that can be verified with KeYmaera X with only one manual step.
π∀∃: πalign + ∀∃ heuristics. Certain ∀ ∃ properties on loops can be reduced
to ∀ ∀ properties for easier verification. In particular, the following reasoning is
sound, as the lockstep of (α, β)∗ presents a witness for the ∀ ∃ property:

if ϕr→[| (α, β)∗ |]ψr and ϕr→⟨⟨(?⊤, β)∗ ⟩⟩⊤ then ϕr→[|(α∗, β∗)⟩⟩ψr

Here, the condition ϕr→⟨⟨(?⊤, β)∗ ⟩⟩⊤ ensures β has valid executions from ϕr.
This rule can be generalized to support reasoning with more program con-

structs, such as [|(α1; α
∗; α2, β1; β

∗; β2)⟩⟩ψr.
We develop π∀∃ by adding these ∀∃ rules above into πalign , and test it on

benchmarks from existing work (Ex.7.5 and Ex.7.6 from [3]). KeYmaera X is
able to verify the generated dL formulas automatically.
πode : π∀∃ + heuristics on dynamics. In addition to integrating general rela-
tional reasoning (showcased in variants πalign and π∀∃), we can integrate domain-
specific relational reasoning. For example, consider the following example on a
relationship between two dynamics of exponential decay:

⌊x⌋L≥⌊x⌋R ∧⌊x⌋L ≥ 0∧A > 0∧A ≥ B→[|(x ′ = A× x , x ′ = B × x )⟩⟩⌊x⌋L≥⌊x⌋R (1)
This property cannot be verified with KeYmaera X using the variants above.

However, this ∀ ∃ property should hold since the x value of the right dynamic
would always be lower if the two dynamics evolve for the same duration of time.
We can derive heuristics based on this observation. Consider a formula of the
form ϕr→[|(x ′= θ&ϕ1, y

′= δ&ϕ2)⟩⟩ψr (this formula has been properly renamed,
so the left and right programs refer to disjoint sets of variables). After applying
the π function, we get a dL formula of the form: ϕ→[x ′= θ&ϕ1]⟨y ′= δ&ϕ2⟩ψ,
which can be reasoned with the following heuristic:

if ϕ→[x ′= θ, y ′= δ&(ϕ1 ∧ ϕ2)]ψ and ϕ→[x ′= θ, y ′= δ](ϕ1 → ϕ2)

then ϕ→[x ′= θ&ϕ1]⟨y ′= δ&ϕ2⟩ψ
The first condition of this heuristic merges two dynamics into one and forces the
two dynamics to evolve for the same duration of time. A formula of the form
ϕ→[x ′= θ, y ′= δ&(ϕ1 ∧ ϕ2)]ψ is often easier to prove. The second condition on
evolution constraints indicates there exists executions of the right dynamics if
the left has valid executions. The second condition is needed to ensure there
exists an execution of β for a [|(α, β)⟩⟩ϕr modality.

We develop πode by adding this heuristic into π∀∃, and we manage to auto-
matically verify EQ.1 in KeYmaera X. In addition to Eq.1, we apply πode to a
non-trivial case study on a water tank from existing work [49]. Its main property
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is a ∀ ∃ one on a system-level model of the water tank. The function πode first
applies the heuristic added in π∀∃, and then applies the heuristic added in πode .
We manage to verify the dL formula generated by πode on this property with
only one manual proof step.
πsyn : πode + User Inputs. We further investigate the utility of the encoding
by adding a heuristic derived from recent work on relational verification of ∀ ∀
properties on dynamics (Thm.24[29]). The heuristic aims to reason with dLrel
formulas of the form: ϕr→[| (x ′= θ&ϕ1, y

′= δ&ϕ2) |]ψr. However, instead of fixing
the duration passed by the left and right dynamics as in πode , this heuristic asks
for user inputs that would allow the two dynamics to synchronize at different
time points, e.g., compare the values of x and y after the left and right dynamics
evolve for different durations.

We develop a variant πsyn that asks users to provide inputs when it sees
appropriate dLrel formulas, and then produces corresponding dL formulas. We
test πsyn with two case studies from [29]: after obtaining the correct inputs, πsyn
produces dL formulas that can be automatically verified by KeYmaera X.
Discussion. Our experiments demonstrate the feasibility of integrating tech-
niques into the encoding, thereby promoting automated verification of relational
properties. Note that we manually develop all these variants of π. How to sys-
tematically and automatically integrate different techniques is an interesting and
useful future work. The main difficulty is, given an input rel formula, to iden-
tify the heuristics to use in its transformation. We plan to develop algorithms
to automate the selection of heuristics.

6 Related Work

BiKAT.. The closest related work is the BiKAT [3], an extension of KAT to help
reason with the alignments of relational properties through equational reason-
ing. A main focus of BiKAT is to ensure adequacy : the aligned program should
capture all computations of the originial program. Our biprogram construct is
analogous to the design in BiKAT. However, a major difference between our
work and BiKAT is applicability: the main focus of BiKAT is alignments of two
programs, while we also concern domain-specific reasoning. The reasoning rules
for BiKAT can be encoded in the translations (as shown in Section 5.2), but
BiKAT cannot be used to reason with many dLrel formulas. In addition, the de-
sign of modalities promotes expressing complex relational properties concisely,
which is not a motivation behind BiKAT.
Relational Reasoning for Dynamic Logic.. Beckert et al. have done a se-
ries of work on extending dynamic logic with trace modalities [10, 9, 26]. They
further apply trace modalities to check secure information flow in the setting
of concurrent programs [26]. Their work focus on first-order dynamic logic with
deterministic programs. The limitation to deterministic programs is significant
because nondeterminism is essential to the utility of dynamic logics, especially
in AI-enabled systems [24]. Gutsfeld et al. introduce an expressive extension
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to propositional dynamic logic to check hyperproperties by introducing path
quantifiers [27]. Algorithms for model checking these hyperproperties are intro-
duced. Tool support is left for future work. In comparison, the rel extension
goes beyond propositional dynamic logic, and it can reuse existing tools to verify
relational properties.
Relational Reasoning for Differential Dynamic Logic.. Various approaches
have been proposed to analyze specific relational properties in dL. A primitive
is introduced to express a refinement relation between two hybrid programs [31].
An expressive modal logic based on dL has been introduced to reason with nond-
educibility [13]. Neither work provides tool support. Kolčák et al. introduce a
relational extension of dL that focuses on reasoning about ∀ ∀ on two dynam-
ics [29]. Our translation for dLrel is able to integrate this work. Xiang et al.
introduce a formal framework in the setting of dL for modeling and analyzing
the robustness of cyber-physical systems under sensor attacks [48]. In our case
study for dL, we express and verify this robustness property with dLrel, which
is more succinct than the original example.
Biprogram.. Our biprogram is an adaptation of the work of Pottier and Simonet
on information flow analysis for ML [38]. The work introduces an extension of
ML that encodes a pair of ML terms as a single bracket construct. The bracket
constructs cannot be nested. This is analogous to our design in that the bipro-
gram contains two programs of the host logics. This bracket-based approach has
been often used in proving noninterference, e.g., [51, 4]. The name “biprogram”
is also used in other recent work on relational reasoning [6, 3].
Relational Program Logic. Another approach for relational verification is
to use relational program logic [11, 50, 32]. Benton introduced Relational Hoare
Logic for verifying program transformations [11], which provides a general frame-
work for relational correctness proofs. Recent work proposes a notion to eval-
uate the design of Relational Hoare Logic [32]. Sousa and Dillig introduce a
program logic, named Cartesian Hoare Logic (CHL), for verifying k-safety prop-
erties [42]. The work has been further extended for proving the correctness of
3-way merge [43]. They introduce a generalized form of Hoare triples to express
relations between different program executions, and use SMT solvers to deter-
mine their satisfiability. D’Osualdo et al. [21] describe a logic for hyper-triple
composition (LHC) based on weakest preconditions that can decompose a hy-
persafety proof along the boundary of hyper tuples, offering ways of combining
multiple k-safety proofs. These relational program logics often are based on weak-
est pre-condition and only support ∀ ∀ pre/post k-safety properties. In contrast,
the rel extensions naturally support properties with mixed modalities. More-
over, the translations for rel extensions open opportunities in combining general
relational reasoning and and domain-specific reasoning. We believe these rela-
tional program logics can be also integrated as a part of the translations, which
we leave to future work.
Self-Composition and Product Program.. The encodings introduced in this
work are inspired by self-composition, which is a common approach for relational
reasoning [8, 19, 7, 16]. Approaches based on self-composition are often syntax-
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directed, that is, they compose two programs that have similar, if not identical,
syntactic constructs. Alternatively, property directed self-composition [41] tack-
les programs that cannot be easily aligned in a composition. It composes pro-
grams (or copies of the same program) by finding good alignment between the
copies in order to have expressible assertions. The encodings in this work can be
viewed as special kinds of self-compositions that shall be adapted for different
host logics. The encoding can benefit from advances in self-composition, as we
have shown in Section 5.2.

Other Related Work.. Noninterference is a well-known relational property for
secure information flow and has been widely studied, e.g., [38, 44, 47, 5, 15]. rel
extensions bring in several major benefits for properties like noninterference.
First, noninterference reasons about program executions, and modalities in rel
capture executions intuitvely. Different variants of noninterference can be con-
cisely expressed, as shown in the examples of Section 3. Second, the notion of
noninterference can be easily extended to different domains (host logics), as the
rel extension connects the common program constructs with domain-specific
constructs. And third, verifying noninterference can leverage more existing tools,
as the translations can integrate different techniques.

Relational verification has been studied in the setting of temporal-style logics,
such as HyperLTL and HyperCTL, have been introduced to model relational
properties [17, 12, 46, 27]. Model checking is often used in verify these properties.
In contrast, rel extensions are more expressive on program behaviors than logics
like HyperLTL and HyperCTL. Translations for the extensions may leverage
the model checkers for HyperLTL or HyperCTL if the correct heuristics are
developed, which we leave to future work.

7 Conclusion

We introduce a general and lightweight relational extension for dynamic logics.
We expect that the extension can be instantiated for almost any dynamic logic,
in the same way that one would expect that almost any dynamic logic could be
extended (syntactically and semantically) with first-order operators. Verifying
rel formulas can leverage existing tools developed for the host logics. Moreover,
the instantiations show great potential in promoting verification by integrating
general relational reasoning and domain-specific relational reasoning.

Future work. One immediate next step is to systematically integrate techniques
for general relational reasoning and domain-specific relational reasoning into the
encoding. Proof automation with the translations is an important and inter-
esting future work. Additionally, we believe the natural expression of relational
properties by the rel extension opens new opportunities to explore more power-
ful verification techniques. We plan to develop a novel proof system for the rel
extension that allows us to prove relational properties that cannot be proven by
existing tools and techniques.
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