
Extending Dynamic Logics with First-Class
Relational Reasoning

Jian Xiang∗, Stephen Chong†
∗College of Computing and Informatics, UNC Charlotte, jian.xiang@charlotte.edu

†SEAS, Harvard University, chong@seas.harvard.edu

Abstract—Many important properties of computer systems are
relational properties, which are often difficult to express and
verify. Dynamic logics are well-known formalisms for program
verification. We present a general extension, called the REL exten-
sion, of dynamic logics to support first-class relational reasoning.
The extension provides intuitive syntax to express relational
properties, which may be difficult or impossible to express in
the host dynamic logic. The REL extension can be instantiated
for different host logics and may or may not add expressive power
over the host logic. Verifying relational properties expressed
by the REL extension can benefit from techniques developed
for general relational reasoning and domain-specific relational
reasoning, and existing tools developed for the host logic.

We validate the applicability of the REL extension by in-
stantiating it for two well-known and distinct dynamic logics:
differential dynamic logic (dL) and linear dynamic logic on finite
traces (LDLf). As a result, both instantiations can express key
relational properties that cannot be easily expressed with the
host logics. We state and prove the theorems on the expressive
power of the instantiations. We develop two encodings for
the instantiations to leverage existing tools for verification. We
further demonstrate the usefulness of the encodings with an
experiment on verifying a set of non-trivial relational properties.

I. INTRODUCTION

Many important properties, such as noninterference [1], are
relational properties [2], i.e., predicates over sets of pairs of
executions. They are fundamental properties but often harder
to express and reason about than single-trace properties, as
they require reasoning simultaneously about multiple execu-
tions. Moreover, there is less tool support for verification of
relational properties, compared to single-trace properties.

Dynamic logics are multi-modal logics widely used for
verifying single-trace properties of imperative programs [3],
[4], [5], [6]. They are specified over a set of programs α and
a set of formulas ϕ. Program specifications are stated with
modality of necessity [α]ϕ that reads “after any execution of
α, ϕ is true” and modality of existence ⟨α⟩ϕ that reads “after
some execution of α, ϕ is true”. Different variants of dynamic
logics have been introduced and used in different application
domains. For example, differential dynamic logic is developed
for the safety of cyber-physical systems [7], [8], and linear
dynamic logic is often used for AI-based planning [9]. Various
tools and techniques have been developed for the verification
of formulas expressed with these dynamic logics. However,
relational verification is often not well-explored across many
of these application domains. It would be advantageous if we
could easily incorporate relational reasoning support into these

dynamic logics and, furthermore, leverage existing tools and
techniques for relational verification.

A lightweight yet efficient approach for expressing rela-
tional properties is extending the host logic with a biprogram
construct [10], [11], which explicitly specifies a pair of pro-
grams and thus allows reasoning about executions of the pair.
We argue that extending dynamic logics with a biprogram
provides intuitive and effective support for expressing many
useful relational properties. Elements from both programs can
be directly used in expressing relational properties. Modalities
can be designed to quantify over executions of the program
pair. As such, a dynamic logic can be cleanly extended with
first-class support for expressing relational properties.

We contribute a general extension of dynamic logics, called
the REL extension, that builds upon the biprogram construct
to support first-class relational reasoning for different dynamic
logics. A REL extension has three major components1:
• REL programs that specify pairs of programs. A key con-

struct is biprogram (α, β), which specifies a left program
(i.e., α) and a right program (i.e., β), of the host logic.

• REL modalities that express executions of program pairs.
They play the same role as modalities in dynamic logics.
They can naturally express different quantifications over
executions of program pairs. For example, REL modality
of necessity [| (α, β) |]ϕr expresses that for all executions of
α and β, ϕr holds at the last states of the two executions.

• REL formulas that directly capture relational properties. For
example, the following formula

(⌊x⌋L < ⌊x⌋R) → [| (α, β) |](⌊x⌋L < ⌊x⌋R)
specifies that any pair of executions of α and β preserves
the natural order on the values of x, i.e., if the execution of
program β begins with a higher value for x compared to α,
then its execution will end with a higher value for x. (the
projections ⌊·⌋L and ⌊·⌋R of variable x respectively refer to
its value in the left and right executions).
We design the REL extension in a general and abstract

manner, by focusing on the core constructs, i.e., programs
and formulas, of all dynamic logics. It can be instantiated for
different dynamic logics to support diverse program constructs.
To validate its applicability, we conduct two case studies by
instantiating the REL extension for two well-known dynamic
logics designed for different application domains: (1) differen-

1Color scheme: we use blue color for syntactic constructs of host logics,
and red color for those of the REL extension.

tial dynamic logic (dL) [5], [12], a logic for verifying safety
properties in cyber-physical systems, and (2) linear dynamic
logic on finite traces [9] (LDLf), a logic used by the AI
community for reasoning about temporal constraints. The two
logics share the core constructs, but differ significantly in
other constructs and semantic interpretation. Together they
cover most features of mainstream dynamic logics. Both
instantiations can express key relational properties that are
difficult, if not impossible, to express by the host logics.

A REL instantiation may or may not add expressive power
over the host logic. We prove that the REL instantiation for
dL is equally expressive as dL, but the REL instantiation for
LDLf is strictly more expressive than LDLf .

Verifying REL formulas specified by REL instantiations can
benefit from existing verification tools. We introduce two
encodings of REL formulas that permit reusing existing tools
to verify these formulas. The first encoding is inspired by the
technique of self-composition [13], which reduces relational
verification of a program to standard verification of a compo-
sition of two copies of the program. We develop a sound and
complete encoding for the instantiation for dL, and a sound but
incomplete encoding for the instantiation for LDLf . Existing
tools developed for dL and LDLf can be used to verify REL
formulas using this encoding. The second encoding reduces the
problem of verifying REL formulas to a satisfiability problem,
by encoding a REL formula as a set of constraints, and then
using SMT solvers to find solutions. We demonstrate with a
sound and complete encoding for the REL extension of LDLf ,
and use Z3 to verify properties specified by the extension.

These encodings promote verification of relational prop-
erties, by leveraging techniques for both general relational
reasoning and domain-specific relational reasoning. To in-
vestigate the usefulness of the encodings, we conduct an
experiment on the encoding for dL. We implement several
variants of this encoding and demonstrate that these variants
can integrate techniques for general relational reasoning as
well as domain-specific relational reasoning. Thanks to this
integration, the variants are able to verify non-trivial relational
properties. We test these variants on a set of benchmarks, most
of which are from existing work. We successfully verify all
benchmarks using a theorem prover developed for dL, with
little to no manual effort. Some of the benchmarks cannot
be automatically verified by prior techniques or tools to our
knowledge.
Contribution. The key contribution of this paper is the design
and validation of a general extension for different dynamic
logics to support lightweight yet effective first-class relational
reasoning. In particular, we make the following contributions:
• A lightweight extension for dynamic logics to support first-

class relational reasoning. Using the modalities, the REL
extension can naturally and concisely express relational
properties involving mixed quantifications. We present a set
of practical example properties (Section III).

• Two case studies that demonstrate the applicability of the
REL extension. We instantiate it for two distinct dynamic
logics: dL and LDLf . Both instantiations can express key

Program: α, β ::= P ∈ Π0 | ?ϕ | α ; β | α∪β | α∗

Formula: ϕ, ψ ::= ⊤ | A ∈ Φ0 | ¬ϕ | ϕ ∧ ψ | [α]ϕ
Fig. 1: Syntax of PDL

Formula semantics
ω |= ⊤ iff ω ∈ W
ω |= A iff ω ∈ V(A)

ω |= ¬ϕ iff ω ̸|= ϕ
ω |= ϕ ∧ ψ iff ω |= ϕ and ω |= ψ
ω |= [α]ϕ iff ν |= ϕ for all state ν with (ω, ν) ∈ JαK

Program semantics
JPK = R(P)

J?ϕK = {(ω, ω) | ω |= ϕ}
Jα ; βK = {(ω, ν) | ∃µ, (ω, µ) ∈ JαK and (µ, ν) ∈ JβK}
Jα∪βK = JαK ∪ JβK

Jα∗K = JαK∗ the transitive, reflexive closure of JαK

Fig. 2: Semantics of PDL

domain-specific relational properties that are difficult, if not
impossible, to express with the host logics. We formally
state and prove the theorems on the expressiveness of both
instantiations (Section IV and V).

• Encodings of REL formulas that allow reusing existing tech-
niques and tools to promote verifying non-trivial REL formu-
las. We have developed two encodings. The first encoding
reduces the verification of REL formulas to the verification
of formulas of the host logics. The second encoding captures
the semantics of REL formulas as constraints that can be
solved by SMT solvers. We experiment with the encoding
for dL on a set of benchmarks. The results are promising: we
can use an existing tool for dL to verify non-trivial relational
properties, with little to no manual effort (Section VI).
Section II introduces the syntax and semantics of PDL.

Section VII discusses related work and Section VIII concludes.

II. PROPOSITIONAL DYNAMIC LOGIC

Propositional dynamic logic (PDL) is a subsystem of most,
if not all, dynamic logics. It extends propositional logic with
modalities to reason about program executions. The language
of regular PDL has expressions of two sorts: (1) propositions
or formulas and (2) programs. Its syntax is defined upon Π0, a
set of atomic programs, and Φ0, a set of atomic propositions.
Programs and propositions are mutually inductively defined
from the atomic ones as shown in Figure 1. Programs include
the operations of Kleene algebra with tests [14]: sequential
composition, nondeterministic choice, nondeterministic repe-
tition, and test of a formula. Formulas include the standard
propositional connectives and program necessity [α]ϕ. Pro-
gram existence ⟨α⟩ϕ can be encoded with program necessity
and vice versa, e.g., [α]ϕ = ¬⟨α⟩¬ϕ. Common abbreviations
for logical connectives apply, e.g., ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ).

The semantics of PDL formulas and programs is interpreted
over a Kripke structure (W , R, V), where W is a nonempty set
of states, R is a mapping from the set Π0 of atomic programs
into binary relations on W , and V is a mapping from the set
Φ0 of atomic propositions into subsets of W . That is, R(P) ⊆

αr, βr ::= Pr | ?ϕr | αr ; βr | αr ∪βr | α∗
r | (α, β)

ϕr, ψr ::= Ar | ¬ϕr | ϕr ∧ ψr | [|αr |]ϕr | ⌊ϕ⌋B (B ∈ {L, R})
(L and R, respectively, denote the left and right states)
Fig. 3: Syntax of the REL extension

W × W for P ∈ Π0, and V(A) ⊆ W for A ∈ Φ0. R and V
are extended inductively to give meanings to all programs and
formulas of PDL as shown in Figure 2. We write ω |= ϕ if
formula ϕ is true at state ω, i.e., ω ∈ V(ϕ). We write JαK to
denote the semantics of α, i.e., if (ω, ν) ∈ JαK, then there is
an execution of α that starts in state ω and ends in state ν.

Relations and states in PDL are abstract, i.e., states in PDL
are abstract points and atomic programs in PDL are abstract
binary relations. Such a level of abstraction lets us focus on the
fundamental design of the REL extension, which we introduce
next. These abstract notions will be later instantiated with
concrete atomic constructs in the case studies.

III. THE REL EXTENSION

This section introduces the design of the REL extension in
the setting of PDL. We present its syntax and semantics, and
then show how to use it to express relational properties.

A. Syntax and Semantics

The REL extension extends PDL with programs, modalities,
and formulas. Figure 3 shows its syntax. It builds on Πr, a
set of REL atomic programs, and Φr, a set of REL atomic
propositions. REL programs are analogous to PDL, with the
addition of a biprogram construct (α, β), where α and β
specify two PDL programs to run, respectively, by the left and
right execution. The syntax of REL formulas is also analogous
to PDL, with the addition of projection formulas ⌊ϕ⌋B, which
refers to a PDL formula ϕ in one of the two executions
specified by B ∈ {L, R}. The REL modality of necessity [|αr |]ϕr
can be used to encode the REL modality of existence ⟨⟨αr ⟩⟩ϕr
and vice versa, e.g., [|αr |]ϕr = ¬⟨⟨αr ⟩⟩¬ϕr.

The semantics of REL programs and formulas is interpreted
over the semantics of REL atomic programs Rr(Pr) (for
Pr ∈ Πr) and REL atomic propositions Vr(Ar) (for Ar ∈ Φr),
as well as the semantics of PDL programs and formulas.
Rr(Pr) is a transition relation between two pairs of states:
if ((ωL, ωR), (νL, νR)) ∈ Rr(Pr), then an execution of the left
program specified by Pr runs from ωL to νL, and an execution of
the right program of Pr runs from ωR to νR. Vr(Ar) is a relation
on states, i.e., Vr(Ar) ⊆ W×W for Ar ∈ Φr. Semantics of all
REL programs and formulas, as shown in Figure 4, is defined
inductively from the semantics of REL atomic programs and
formulas, and the projection formulas. A projection formula
⌊ϕ⌋B tests if PDL formula ϕ holds in the state specified by
B (left or right). REL modality of necessity [|αr |]ϕr holds in
bi-state (ωL, ωR) if and only if formula ϕr holds in any pairs
of states that are reachable from (ωL, ωR) by running αr. We
write JαrKRL to denote the semantics of αr, and (ωL, ωR) |=RL ϕr
if the formula ϕr holds in bi-state (ωL, ωR).

B. Quantification over Executions

Expressing relational properties often involves quantifica-
tions over executions, e.g., for all executions of a program
α, there exists an execution of β that gets the same results.
We can use REL formulas to easily and succinctly express all
quantifications over two executions by using (and mixing) the
necessity and existence modalities, as shown below. We write
σα (or σβ) to denote an execution of program α (or β) and
σα[-1] to denote the last state of σα. The first two entries show
how to encode quantifications without alternations. The other
four show how to encode quantifications with alternations, by
combining the biprogram construct and a special program ?⊤
(i.e., skip in common programming languages).
∀σα ∀σβ.((σα[-1], σβ[-1]) |=RL ϕr) ≡ [| (α, β) |]ϕr

∃σα ∃σβ.((σα[-1], σβ[-1]) |=RL ϕr) ≡ ⟨⟨(α, β)⟩⟩ϕr
∀σα ∃σβ.((σα[-1], σβ[-1]) |=RL ϕr) ≡ [| (α, ?⊤) |]⟨⟨(?⊤, β)⟩⟩ϕr
∀σβ ∃σα.((σα[-1], σβ[-1]) |=RL ϕr) ≡ [| (?⊤, β) |]⟨⟨(α, ?⊤)⟩⟩ϕr
∃σα ∀σβ.((σα[-1], σβ[-1]) |=RL ϕr) ≡ ⟨⟨(α, ?⊤)⟩⟩[| (?⊤, β) |]ϕr
∃σβ ∀σα.((σα[-1], σβ[-1]) |=RL ϕr) ≡ ⟨⟨(?⊤, β)⟩⟩[| (α, ?⊤) |]ϕr

For example, the for all, exists scenario, i.e., ∀σα ∃σβ is en-
coded as [| (α, ?⊤) |]⟨⟨(?⊤, β)⟩⟩, where the modality [| (α, ?⊤) |]
quantifies over executions of program α, and the modality
⟨⟨(?⊤, β)⟩⟩ quantifies over executions of program β.

From now on, we write [|(α, β)⟩⟩ϕr and ⟨⟨(α, β) |]ϕr, respec-
tively, for [| (α, ?⊤) |]⟨⟨(?⊤, β)⟩⟩ϕr, and ⟨⟨(α, ?⊤)⟩⟩[| (?⊤, β) |]ϕr.

C. Expressing Relational Properties

The REL extensions can express relational properties intu-
itively. We show several examples here. Some examples are
more than PDL, but their meanings can be easily inferred.
Refinement Relation. A program α refines another program
β if the behaviors of β subsume those of α. That is, all states
reachable from a state ω by following a transition of α could
also be reached from ω by following some transitions of β.
Such a refinement relation can be encoded using the ∀σα,∃σβ
quantification over executions, that is:

(⌊A⃗⌋L ↔ ⌊A⃗⌋R) → [|(α, β)⟩⟩(⌊A⃗⌋L ↔ ⌊A⃗⌋R)
Where programs α and β refer to the same set of atomic
propositions and programs. The formula (⌊A⃗⌋L ↔ ⌊A⃗⌋R) is a
shorthand for

∧
i∈1...n (⌊Ai⌋L ↔ ⌊Ai⌋R), which encodes that the

left and right states are identical.
Noninterference. Noninterference [1], [15] is a well-known
strong information security property that guarantees that public
outputs of a system do not reveal any confidential infor-
mation (i.e., confidentiality), or dually that untrusted inputs
of a system do not modify trusted contents (i.e., integrity).
Noninterference has various variants, especially in a language
that involves nondeterminism. Here, we express a few variants.

First, a common notion of noninterference for confidential-
ity of a deterministic program ensures that attackers who have
access to the program’s low-security input and output won’t
be able to infer the program’s high-security input. Intuitively,
the property states that for any executions of a deterministic
program α receiving the same low-security inputs, they should

Semantics of REL program
JPrKRL = Rr(Pr)

J?ϕrKRL = {((ωL, ωR), (ωL, ωR)) | (ωL, ωR) |=RL ϕr}
Jαr ; βrKRL = {((ωL, ωR), (νL, νR)) | exists µ

L
, µ

R
that ((ωL, ωR), (µL

, µ
R
)) ∈ JαrKRL and ((µ

L
, µ

R
), (νL, νR)) ∈ JβrKRL}

Jαr ∪βrKRL = {((ωL, ωR), (νL, νR)) | JαrKRL ∪ JβrKRL}
Jα∗

r KRL = JαrK∗RL
the transitive, reflexive closure of JαrKRL, where α0

r is (?⊤, ?⊤)

J(α, β)KRL = {((ωL, ωR), (νL, νR)) | (ωL, νL) ∈ JαK and (ωR, νR) ∈ JβK }
Semantics of REL formula
Truth of formula ϕr in bi-state ωL, ωR, denoted (ωL, ωR) |=RL ϕr is defined inductively as follows:

(ωL, ωR) |=RL Ar iff (ωL, ωR) ∈ Vr(Ar)

(ωL, ωR) |=RL ¬ϕr iff (ωL, ωR) ̸|=RL ϕr
(ωL, ωR) |=RL ϕr ∧ ψr iff (ωL, ωR) |=RL ϕr and (ωL, ωR) |=RL ψr

(ωL, ωR) |=RL [|αr |]ϕr iff for all νL, νR that ((ωL, ωR), (νL, νR)) ∈ JαrKRL, (νL, νR) |=RL ϕr holds
(ωL, ωR) |=RL ⌊ϕ⌋B iff ωL |= ϕ when B = L or ωR |= ϕ when B = R

Fig. 4: Semantics of REL programs and formulas

produce the same low-security outputs. Such a noninterference
notion is a ∀ ∀ property:

(⌊A⃗in⌋L ↔ ⌊A⃗in⌋R) → [| (α, α) |](⌊A⃗out⌋L ↔ ⌊A⃗out⌋R)

Where atomic propositions A⃗in and A⃗out represent, respectively,
low-security inputs and outputs of α. The modality [| (α, α) |]
ensures that α produces the same low-security output if the
same low-security input is received.

Various forms of noninterference can be defined when α
has nondeterminism. One of them is possibilistic noninterfer-
ence [1] or nondeducibility [16], which states that an attacker
cannot infer confidential information for certain in a program
with non-observable nondeterminism. Intuitively, the attacker
cannot observe the nondeterministic choices made by program
α, so the attacker is not certain if the information received is
confidential. Such a noninterference notion can be expressed
with the forall, exists quantifications over executions of α, i.e.,

(⌊A⃗in⌋L ↔ ⌊A⃗in⌋R) → [|(α, β)⟩⟩(⌊A⃗out⌋L ↔ ⌊A⃗out⌋R)

To properly reason about two executions in the presence
of nondeterminism, some variants of noninterference require
(some of) the nondeterminism in the two executions to re-
solve in the same way [17]. For example, a nondeterministic
choice in a program may represent a user’s decision, which
is assumed to be public input, and so the resolution of the
nondeterministic choice should be the same in both executions.
Under such circumstances, we can use the REL nondetermin-
istic choice, i.e., αr ∪βr, to express that two executions take
the same choice. The following formula shows an example
of such a nondeterminism-aware noninterference, where αr is
((?Ain ; ?Aout, ?Ain ; ?Aout)) and βr is ((?¬Aout, ?¬Aout)):

(⌊Ain⌋L ↔⌊Ain⌋R) → [|αr ∪βr |](⌊Aout⌋L ↔⌊Aout⌋R)
This formula indeed holds: two executions with the same
nondeterministic choice, i.e., either the first branch (i.e., αr)
or the second (i.e., βr), would lead to the same value of Aout.

Lock-step Properties. Note that the semantics of α∗
r means

the left and right programs specified in αr would always loop
for the same number of iterations. Combining it with other
constructs, we can express interesting relational properties
on loops that involve lock-step. For example, the following

formula expresses a relational invariant of a loop with a
biprogram. In particular, an invariant ϕinv holds at the end
of every loop iteration of (α, β)∗: ϕinv → [| (α, β) |]ϕinv.

Loop Alignments. As shown in prior work, verifying rela-
tional properties on loops may require careful alignment in
executing the left and right loops. The REL extension can
readily and clearly express these alignments. Consider the
example (DoubleSquare) adapted from [18], [19] on integers
x, y, and z:

⌊x⌋L=⌊x⌋R→ [|y := 0 ; (z := 2x, z := x); (body∗, body∗) |]

[| (?z ≤ 0, ?z ≤ 0); (?⊤, y := 2y) |]⌊y⌋L =⌊y⌋R

Where body ≡ ?z ≥ 0; z := z − 1; y := y + x. An effec-
tive alignment for verifying this property can be ex-
pressed as another formula that replaces (body∗, body∗) with
(body ; body, body)∗ which aligns two loop iterations of the
left execution with one iteration of the right.

For general ∀ ∀ formulas of the form [| (body∗, body∗) |]ϕr,
we can express the alignments required for verifying such a
formula in a very general manner, as follows:
[| (?Gb; (body, body)∪ ?Gl; (body,⊤)∪ ?Gr; (⊤, body))∗ |]ϕr

Where formulas Gb, Gl, and Gr specify the conditions for
executing, respectively, both the left and right loops, the left
loop only, and the right loop only. For example, we can get an
effective alignment for verifying the example above by letting
Gb ≡ ⌊x⌋L=⌊x⌋R, Gl ≡ ⌊x⌋L≥⌊x⌋R, Gr ≡ ⌊false⌋L∧⌊false⌋R.

Motion Planning. The REL extension can intuitively express
many relational properties on motion planning or path finding,
e.g., for driving or robots. For example, an important property
in motion planning is finding the optimal path (of all possible
paths). Given a control system modeled as α, the following ∃ ∀
formula specifies that an optimal path exists (the left execution
arrives no-later than all possible executions):

(⌊ϕ⌋L∧⌊ϕ⌋R)→⟨⟨(α, α) |](⌊ψ⌋R→⌊ψ⌋L)
Where ⌊ϕ⌋L∧⌊ϕ⌋R specifies that executions start at the same
location, and ⌊ψ⌋R→⌊ψ⌋L specifies that the left execution
arrives no-later than other executions of α. We can further
express useful variants of this property. For example, an

optimal path may exist only if certain actions are triggered:
(⌊ϕ⌋L∧⌊ϕ⌋R)→⟨⟨((α1; β; α2), α) |](⌊ψ⌋L→⌊ψ⌋R)

Where β specifies these actions. And α1 and α2 model
possible actions the system can take before and after β.

Beyond Relational Properties. By renaming variables used
in a program, we may also express hyperproperties that are
beyond relational. For example, consider the notion of gener-
alized noninterference [2] that states for any two executions
t1 and t2 of α, there exists another execution t3 of α whose
high inputs are the same as t1 and whose low events are the
same as t2. We can express this hyperproperty as follows:
(⌊Ah⌋L ↔⌊ϵ(Ah)⌋R)→[| (α, α) |]⟨⟨(?⊤, ϵ(α))⟩⟩(⌊Al⌋R ↔⌊ϵ(Al)⌋R)
Where a function ϵ renames the input programs (or formulas)
with fresh variables. Propositions Ah and Al represent, respec-
tively, the high inputs and low events of α.

IV. CASE STUDY: DIFFERENTIAL DYNAMIC LOGIC

To validate the applicability of the REL extension, this
section and the next present case studies of the extension on
two distinct dynamic logics: (a) differential dynamic logic [5],
[7], [12] (dL), and (b) linear dynamic logic on finite traces [9]
(LDLf). The two host logics differ in non-trivial ways. To-
gether they cover most features of mainstream dynamic logics.
And their differences make them great testbeds for exploring
the applicability of the REL extension.

A. Differential Dynamic Logic (dL)

dL is a first-order dynamic logic that enables verifying high-
level cyber-physical systems models featuring real arithmetic,
nondeterminism, and differential equations. Programs in dL
are referred to as hybrid programs [7]. They are a formalism
for modeling systems that have both continuous and discrete
behaviors. Hybrid programs can express continuous evolution
(as differential equations) as well as discrete transitions.

Figure 5 shows the syntax of constructs that dL add over
PDL. Variables are real-valued and can be deterministically
assigned (x := θ, where θ is a real-valued arithmetic term) or
nondeterministically assigned (x := ∗). The hybrid program
x′= θ&ϕ expresses the continuous evolution of variables x:
given the current value of variable x, the system follows
the differential equation x′= θ for some (nondeterministically
chosen) amount of time so long as the formula ϕ, the evolution
domain constraint, holds for all of that time. Note that x can
be a vector of variables and then θ is a vector of terms of the
same dimension. Atomic formulas of dL are comparisons of
terms, i.e., (θ ∼ δ).

dL is considered an instantiation of PDL. It instantiates
abstract states as valuations of a set of variables over a domain
of computation: the set of real numbers. It instantiates the set
of atomic programs with assignments and a construct that can
express continuous evolution. It instantiates the set of atomic
formulas with comparisons of terms.

Similar to PDL, the semantics of dL [5], [12] is a Kripke
semantics in which the Kripke model’s worlds are the states of
the system. Let R denote the set of real numbers and V denote
the set of variables. A state is a map ω : V 7→ R assigning a

Term: θ, δ ::= x | c | θ ⊕ δ

Program: α, β ::= x := θ | x := ∗ | x′= θ&ϕ | · · ·
Formula: ϕ, ψ ::= θ ∼ δ | ∀ x. ϕ | · · ·

Fig. 5: Syntax of dL
Term semantics

ωJxK = ω(x)
ωJcK = c

ωJθ ⊕ δK = ωJθK ⊕ ωJδK. ⊕ denotes corresponding
arithmetic operation for ⊕ ∈ {+,×}

Program semantics
· · ·

Jx := θK = {(ω, ν) | ν(x) = ωJθK and for all other
variables y ̸= x, ν(y) = ω(y)}

Jx := ∗K = {(ω, ν) | ν(y) = ω(y) for all variables y ̸= x}
Jx′= θ&ϕK = {(ω, ν) | exists a solution φ : [0, r] → STA

of x′ = θ with φ(0) = ω, φ(r) = ν, and
φ(t) |= ϕ for all t ∈ [0, r]}

Formula semantics
· · ·

ω |= θ ∼ δ iff ωJθK ∼ ωJδK. ∼ denotes corresponding
comparison for ∼ ∈ {=,≤, <,≥, >}

ω |= ∀ x. ϕ iff ν |= ϕ for all states ν that agree with ω
except for the value of x

Fig. 6: Semantics of dL programs and formulas

real value ω(x) to each variable x ∈ V. The set of all states
is denoted by STA. The semantics of hybrid programs and dL
are shown in Figure 6.

With dL, we are often interested in formulas of the form
ϕpre → [α]ϕpost: if ϕpre is true then ϕpost holds after any
possible execution of α. The hybrid program α often has the
form (ctrl ; plant)∗, where ctrl models atomic actions of the
control system and does not contain continuous parts (i.e.,
differential equations); and plant models the evolution of the
physical environment and has the form of x′= θ&ϕ. That is,
the system is modeled as unbounded repetitions of a controller
action followed by an update to the physical environment.

ϕpre ≡ A ≥ 0 ∧ B ≥ 0 ∧ 2Bd > v2

ϕpost ≡ d > 0

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
accel ≡ ?ψ ; a := A
brake ≡ a := −B

ctrl ≡ (accel∪ brake) ; t := 0

plant ≡ d′= −v, v′= a, t′= 1&(v ≥ 0 ∧ t ≤ ϵ)

ϕsafety ≡ ϕpre → [(ctrl ; plant)∗]ϕpost

Fig. 7: dL model of an autonomous vehicle

Consider, as an example, an autonomous vehicle that needs
to stop before hitting an obstacle.2 For simplicity, we model
the vehicle in just one dimension. Figure 7 shows a dL model
of such an autonomous vehicle. Let d be the vehicle’s distance
from the obstacle. The safety condition that we would like

2Platzer introduces this autonomous vehicle example [7].

θr, δr ::= ⌊θ⌋B | θr⊕ δr
αr, βr ::= x := θ | x := ∗ | x′= θ&ϕ | · · ·
ϕr, ψr ::= θr∼ δr | · · ·

Fig. 8: Syntax of dLREL

to enforce (ϕpost) is that d is positive, i.e., doesn’t hit the
obstacle. Let v be the vehicle’s velocity towards the obstacle in
meters per second (m/s) and let a be the vehicle’s acceleration
(m/s2). Let t be the time elapsed since the controller was last
invoked. The hybrid program plant describes how the physical
environment evolves over time interval ϵ: distance changes
according to −v (i.e., d′= −v), velocity changes according to
the acceleration (i.e., v′= a), and time passes at a constant rate
(i.e., t′= 1). The differential equations evolve within the time
interval t ≤ ϵ and if v is non-negative (i.e., v ≥ 0).

The hybrid program ctrl models the vehicle’s controller.
The vehicle can either accelerate at A m/s2 or brake at −B
m/s2. For the purposes of the model, the controller chooses
nondeterministically between these options. Hybrid programs
accel and brake express the controller accelerating or braking
(i.e., setting a to A or −B respectively). The controller can
accelerate only if condition ψ is true, which captures that the
vehicle can accelerate for the next ϵ seconds only if doing so
would still allow it to brake in time to avoid the obstacle.

The formula to be verified, ϕsafety, is shown at the last
line of Figure 7. Given an appropriate precondition ϕpre, the
axioms and proof rules of dL can be used to prove that the
safety condition ϕpost holds. The tactic-based theorem prover
KeYmaera X [20] provides support for constructing proofs.

B. dLREL: A REL Instantiation for dL
We build dLREL, a REL instantiation for dL. dLREL instanti-

ates the atomic programs and formulas of the REL extension
with constructs designed for dL. These constructs are shown in
Figure 8. (We omit the other constructs shown in Figure 3) The
relational atomic programs, i.e., Pr, in dLREL are a relational
version of deterministic assignment (x := θ), nondeterministic
assignment (x := ∗), and continuous evolution (x′= θ&ϕ). The
relational atomic formulas, i.e., Ar, in dLREL are comparisons
of dLREL terms, i.e., θr∼ δr. A dLREL term can be either a
projection term: ⌊θ⌋B, which refers to a dL term θ in one of
the two executions specified by B ∈ {L, R}, or an arithmetic
operation of two dLREL terms, i.e., θr⊕ δr.

Figure 9 shows the semantics of atomic programs in dLREL.
Program Jx := θKRL indicates that the same deterministic as-
signment is run by the left and right executions. The program
Jx := ∗KRL ensures both executions having the same value
for variable x. Jx′= θ&ϕKRL enforces a constraint that the
durations used by the physical evolution in both executions
are the same (i.e., same t for φ1(t) and φ2(t)). Such a
design is useful since we often want to compare executions
of two systems only if they execute for the same period of
duration. Note that evolution constraints in dLREL programs
are dL formulas instead of dLREL formulas. One can imagine
a different dLREL design that allows relational formulas as
evolution constraints. However, they are not good candidates

Semantics of dLREL term
(ωL, ωR)J⌊θ⌋BKRL = ωLJθK if B = L or ωRJθK if B = R

(ωL, ωR)Jθr⊕ δrKRL = (ωL, ωR)JθrKRL ⊕ (ωL, ωR)JδrKRL where
⊕ denotes corresponding arithmetic
operation for ⊕ ∈ {+,×}

Semantics of dLREL program
· · ·

Jx := θKRL = {((ωL, ωR), (νL, νR)) | (ωL, νL) ∈ Jx := θK and
(ωR, νR) ∈ Jx := θK}

Jx := ∗KRL = {((ωL, ωR), (νL, νR)) | νL(z) = ωL(z), νR(z) =
ωR(z) for variables z ̸= x and νL(x) = νR(x)}

Jx′= θ&ϕKRL = {((φ1(0), φ2(0)), (φ1(r), φ2(r))) | φ1, φ2 :
[0, r] → STA are solutions of x′ = θ and
φ1(t) |= ϕ and φ2(t) |= ϕ for all t ∈ [0, r]}

Semantics of dLREL formula
· · ·

(ωL, ωR) |=RL θr∼ δr iff (ωL, ωR)JθrKRL ∼ (ωL, ωR)JδrKRL,
where ∼ is the comparison of ∼.

Fig. 9: Semantics of dLREL programs and formulas

ψ ≡ 2Bd > v2 + (A + B)(Aϵ2 + 2vϵ)
accel ≡ (?ψ, ?ψ) ; a := A
brake ≡ a := −B

ctrlt ≡ ((?temp > T ; thermo := −1)

∪ (?temp < T ; thermo := 1)

∪ (?temp = T))

ctrl′t ≡ ((?temp > T ; thermo := −2)

∪ (?temp < T ; thermo := 2)

∪ (?temp = T))

ctrlv ≡ (accel∪ brake) ; t := 0

plant ≡ d′=−v, v′= a, t′=1, temp′= thermo
& (v ≥ 0 ∧ t ≤ ϵ)

ϕr ≡ (⌊d⌋L = ⌊d⌋R ∧ ⌊v⌋L = ⌊v⌋R)

ϕrobust ≡ ϕr → [| ((ctrlt, ctrl′t); ctrlv; plant)∗ |]ϕr
Fig. 10: A dLREL example on robustness

for evolution constraints since they are often not physically
meaningful in characterizing the physical evolution.

Figure 10 shows examples of dLREL programs and formulas
adapted from existing work [17]. It presents a design of an
autonomous vehicle with velocity control and interior temper-
ature control. Its velocity control is the same as the example
presented in Figure 7. For temperature control, the vehicle
detects the interior temperature (temp), and then chooses one
of the two control modes, specified respectively in program
ctrlt and ctrl′t . Here, both modes compare the current temper-
ature with a target temperature T , and then set the thermostat
accordingly. The modes differ only in the values of thermo. In
the physical environment, the temperature changes according
to thermo (i.e., temp′= thermo).

A system designer may want to ensure that the vehicle’s
control over velocity is robust, i.e., the choice of modes for
temperature control won’t interfere with the vehicle’s control
of velocity. This relational property is expressed as a dLREL

formula at the last line (i.e., ϕrobust). Intuitively, the formula
says for two runs of the vehicle, that have different modes of
temperature control, if the vehicle starts with the same position
and velocity (the premise ϕr of the implication), makes the
same control decisions for acceleration and brake (ctrlv), and
runs for the same duration (plant), it would end with the same
position and velocity (the conclusion ϕr of the implication).
The validity of this formula suggests that the vehicle has robust
velocity control.

Expressing such a relational property with dLREL is straight-
forward and much more succinct than the original version [17].

Theorem 1. dLREL and dL are equally expressive.

This theorem holds because every dL formula can be
encoded as an equivalent dLREL formula and vice versa. For
the first direction, a dL formula ϕ can be encoded as a
dLREL formula ⌊ϕ⌋L or ⌊ϕ⌋R. We prove the second direction
by constructing a sound and complete encoding of dLREL in
dL, which we will describe in Section VI.

V. CASE STUDY: LINEAR DYNAMIC LOGIC

This case study further explores the applicability of the
REL extension by developing LDLREL, a REL instantiation for
linear dynamic logic on finite traces (LDLf), a logic that is
often used by the AI community for reasoning about actions
and planning, such as expressing temporal constraints in task
planning [21]. LDLf presents a great testbed, as it differs
significantly from dL, in that its semantics is interpreted over
finite traces rather than state transitions. Verification of LDLf

formulas often focuses on satisfiability rather than validity.
We first present the syntax and semantics of LDLf and

LDLREL, and then use LDLREL to express two relational
properties that cannot be directly expressed with LDLf . We
prove that LDLREL is strictly more expressive than LDLf .

A. Linear Dynamic Logic on Finite Traces

LDLf has the same syntax as PDL (shown in Figure 1), with
the set of atomic programs, i.e., Π0, instantiated as proposi-
tional formulas over the atomic propositions. For presentation
purposes, we use metavariable ϕAP (instead of P in Figure 1)
to range over these atomic programs.

Different from PDL (and dL), the semantics of LDLf is
interpreted over finite traces. A trace is a finite sequence of
states: (σ0, σ1, σ2, · · · , σn), where each state is a subset of
atomic propositions, i.e., σi ∈ (2Φ0) for all i ∈ {0, 1, 2, · · · , n}.
A state σi satisfies an atomic proposition A if A ∈ σi. The
position (i ∈ {0, 1, 2, · · · , n}) can be used to index the states,
that is, we write σ(i) to indicate the ith state of a trace σ.

Given a set of atomic propositions Φ0 and a finite trace
σ ∈ (2Φ0)∗, the truth of formula ϕ in trace σ at a position
0 ≤ i < |σ|, denoted σ, i |= ϕ, is inductively defined [9]:
σ, i |= A iff A ∈ σ(i)

σ, i |= ¬ϕ iff σ, i ̸|= ϕ

σ, i |= ϕ ∧ ψ iff σ, i |= ϕ and σ, i |= ψ

σ, i |= [α]ϕ iff for all i ≤ j < |σ| such that (i, j) ∈ R(α, σ),

σ, j |= ϕ holds
The semantics of a program α on a trace σ is defined as a
binary relation R(α, σ) on indices of the trace, i.e., a pair of
indices (i, j) ∈ R(α, σ) if the semantics of α holds at the sub-
trace identified by the indices. The semantics of atomic pro-
grams ϕAP (propositional formulas over atomic propositions)
is the key for R(ϕAP , σ). In particular, (i, i+1) ∈ R(ϕAP , σ) if
the formula ϕAP holds at state σ(i). The relation R(α, σ) for
all program constructs are then inductively defined:

R(ϕAP , σ) = {(i, i + 1) | σ, i |= ϕAP}
R(?ϕ, σ) = {(i, i) | σ, i |= ϕ}

R(α ; β, σ) = {(i, j) | exists k such that
(i, k) ∈ R(α, σ) and (k, j) ∈ R(β, σ)}

R(α∪β, σ) = R(α, σ) ∪R(β, σ)

R(α∗, σ) = {(i, i)} ∪ {(i, j) | exists k such that
(i, k) ∈ R(α, σ) and (k, j) ∈ R(α∗, σ)}

B. Model a Gridworld Problem with LDLf

We use LDLf to model a gridworld problem. Consider
the problem of finding a path for a robot towards the des-
tination in a 2×3 gridworld with obstacles. The top part of
Figure 11 shows the example. The destination is location 3
and nonterminal locations are S = {0,1,2}. There are four
actions possible in each location, i.e., up, down, right,
and left, which deterministically cause the corresponding
location transitions, except for actions that would take the
robot off the grid or hit on obstacle.

1 X

X 2 3

0

X

X

X

X

Fig. 11: 2 × 3 gridworld
with obstacles (shaded grids
with crossmarks) and two
planning strategies. Valid
locations are {0,1,2,3} and
3 is the destination

A strategy of the gridworld
problem guides the robot to the
destination from any starting
location. A strategy is optimal
if it takes the least steps to
reach the destination. The bot-
tom part of Figure 11 shows
two strategies for this problem.
The arrows show the actions
the robot should take when fol-
lowing a strategy. The strategy
on the left is a deterministic
one, while the strategy on the
right lets the robot nondeter-

ministically choose between left and down at location 1.
We use four atomic propositions s0, s1, s2, s3 to mean that

the robot currently sits at the corresponding location. For
example, the robot is at location 0 if and only if the following
formula holds: (s0 ∧ ¬s1 ∧ ¬s2 ∧ ¬s3). We write ŝi to denote
the formula (si ∧

∧
j ̸=i(¬sj)), where i, j ∈ S = {0,1,2,3}.

We model strategies with LDLf programs. Intuitively, a
strategy can be modeled as repetitions of control actions. At
every control step, a strategy checks the current location and
decides the next state, until the robot reaches the destination.
Specifically, the program modeling a strategy is a repetition
of a nondeterministic choice between possible actions. Every
action is modeled as a sequence of two programs: a proposi-

tional formula that checks the current location followed by a
test that specifies the next location to which the action leads.

For example, in both strategies shown in Figure 11, location
1 follows location 0. It is modeled as ŝ0 ; ?ŝ1. And the left
strategy can be modeled by a program αs = (?¬ŝ3 ; αl)

∗; ?ŝ3

where αl models possible actions at every step, the loop ends
when the robot reaches the destination:

αl ≡ (ŝ0 ; ?ŝ1) ∪ (ŝ1 ; ?ŝ2) ∪ (ŝ2 ; ?ŝ3)
The right strategy can be similarly modeled by a program
βs = (?¬ŝ3 ; βl)

∗; ?ŝ3 where βl is:
βl ≡ (ŝ0 ; ?ŝ1) ∪ (ŝ1 ; ?ŝ2) ∪ (ŝ1 ; ?ŝ0) ∪ (ŝ2 ; ?ŝ3)

For example, if a trace satisfies ŝ0 ∧ ⟨αs⟩ŝ3, then we find
a trajectory of the robot that reaches the destination from
location 0 by following the left strategy. The length of the
trace (also the length of the trajectory) is equal to 1+ number
of iterations α∗

l runs.

C. LDLREL: An REL Instantiation for LDLf

Many important properties of planning, such as robustness
and privacy, are relational properties on multiple traces [22].
We develop LDLREL, a REL instantiation for LDLf , and use it
to express relational properties of the gridworld problem.

LDLREL has the same syntax as the REL extension previously
shown in Figure 4. Its semantics, shown in Figure 12, is
interpreted over a pair of finite traces σL and σR, and their
indices. The semantics of LDLREL programs is defined as
a transition relation between pairs of indices. For example,
the semantics for a biprogram construct, Rr((α, β), σL, σR),
is defined on two pairs of indices whose first and second
elements belong, respectively, to program relation of α, i.e.,
(i, x) ∈ R(α, σL) and β, i.e., (j, y) ∈ R(β, σR).

We use LDLREL to express two important relational proper-
ties. The first one is a relational property of a single strategy,
and the second compares two strategies.

Privacy of Initial Location. Location privacy, i.e., keeping
individual locations private while they are partially observable
for planning, is an important issue in mobile navigation [23],
[24], [25]. We adopt a definition of opacity from existing
work [22]. A strategy is opaque if it satisfies that there exist at
least two paths with the same observation but bearing different
secrets, such that the secret of each path cannot be identified
exactly only from the observation. Assume that the private
information we want to protect is the initial location of the
robot, and the publicly observable location is the destination.
Thus, the following formula should be satisfiable if a strategy,
e.g., αs, ensures privacy of the initial location:

(
∨

i,j∈S∧j ̸=i(⌊ŝi⌋L ∧ ⌊ŝj⌋R)) ∧ ⟨⟨(αs, αs)⟩⟩(⌊ŝ3⌋L ∧ ⌊ŝ3⌋R)

Where formula (
∨

i,j∈S∧j ̸=i(⌊ŝi⌋L ∧ ⌊ŝj⌋R)) states that the two
executions start with different initial locations, and the formula
of LDLREL modality of existence, i.e., ⌊ŝ3⌋L ∧ ⌊ŝ3⌋R, indicates
two executions have the same observable information.

Superiority of Strategies. This property expresses that one
strategy, e.g., αs, is better (no worse) than another one, e.g., βs.
Recall that the number of iterations is monotonically related
to the length of the robot’s trajectory. Therefore, if the left and

right executions start from the same initial location, and follow
αs and βs respectively for the same number of iterations, then
the right execution won’t reach the destination before the left
execution. In particular, the following formula is valid (its
negation is unsatisfiable), when strategy αs is superior to βs:

(
∨

i∈S(⌊ŝi⌋L ∧ ⌊ŝi⌋R)) → [| (αl, βl)
∗ |](⌊ŝ3⌋R →⌊ŝ3⌋L)

The formula (
∨

i∈S(⌊ŝi⌋L ∧ ⌊ŝi⌋R)) indicates the two executions
start with the same location, i.e., both start at location 0, 1,
2, or 3. Repetition of the biprogram construct, i.e., (αl, βl)

∗,
means both programs run for the same number of iterations.
(⌊ŝ3⌋R →⌊ŝ3⌋L) specifies that the left execution reaches the
destination no later than the right one. The formula should
always hold if strategy αs is no worse than βs.

Note that the host logic LDLf cannot express the second
property. The property is expressible in LDLREL because
additional expressive power is introduced by LDLREL.

Theorem 2. LDLREL is strictly more expressive than LDLf .

Intuitively, the increased power is caused by two factors:
(1) the semantics of LDLf is interpreted over traces and its
expressive power is the same as regular expressions [9], and
(2) use of biprogram construct (α, β)∗ can express that α and
β have the same number of iterations, which is not regular, so
it is not expressible in LDLf .

VI. VERIFICATION TECHNIQUES

Verifying REL formulas can take advantage of existing tech-
niques and tools. In this section, we introduce two encodings to
exploit the benefits. The first one is host logic encoding, which
transforms REL formulas into formulas of the host logics, so
existing tools and techniques developed for the host logics
can be leveraged. The second encoding is constraint-based
encoding, which encodes a REL formula as a set of constraints
and then uses SMT solvers, e.g., Z3, to verify the constraints.

To understand how the encodings can promote the veri-
fication of REL formulas, we conduct an experiment with
the host logic encoding for dLREL on a set of benchmarks.
We demonstrate that the encoding can integrate (and benefit
from) techniques for general relational reasoning and domain-
specific reasoning. Thanks to the integration, we can verify
the benchmarks with an existing tool developed for dL, with
little to no manual effort.

We first use dLREL and LDLREL respectively to introduce the
first and second encodings, and then discuss the experiment.

A. Host Logic Encoding

The first encoding reduces the verification of REL formulas
to the verification of formulas of the host logics. The encoding
is inspired by self-composition [26], [13], [27], [28], a proof
technique often used for proving noninterference for determin-
istic programs. We briefly introduce self-composition first, and
then introduce the encoding in the setting of dLREL.
Self-Composition. To develop an intuition for how the self-
composition technique is used to prove noninterference, con-
sider the problem of checking whether low-security outputs of
a deterministic program reveal high-security inputs. Construct

LDLREL formula semantics
Truth of formula ϕr at position i of a finite trace σL and position j of a finite trace σR is inductively defined as follows:
(σL, σR, i, j) |=RL ¬ϕr iff (σL, σR, i, j) ̸|=RL ϕr
(σL, σR, i, j) |=RL ϕr ∧ ψr iff (σL, σR, i, j) |=RL ϕr and (σL, σR, i, j) |=RL ψr

(σL, σR, i, j) |=RL [|αr |]ϕr iff for all position x, y that ((i, j), (x, y)) ∈ Rr(αr, σL, σR), (σL, σR, x, y) |=RL ϕr holds
(σL, σR, i, j) |=RL ⌊ϕ⌋B iff σL, i |= ϕ when B = L or σR, j |= ϕ when B = R

LDLREL program semantics
The semantics for LDLREL program αr and trace σL σR is defined inductively as follows:

Rr(?ϕr, σL, σR) = {((i, j), (i, j)) | (σL, σR, i, j) |=RL ϕr}
Rr(αr ; βr, σL, σR) = {((i, j), (x, y)) | ∃m, n that ((i, j), (m, n)) ∈ Rr(αr, σL, σR) and ((m, n), (x, y)) ∈ Rr(βr, σL, σR)}
Rr(αr ∪βr, σL, σR) = {((i, j), (x, y)) | ((i, j), (x, y)) ∈ Rr(αr, σL, σR) or ((i, j), (x, y)) ∈ Rr(βr, σL, σR)}
Rr((α, β), σL, σR) = {((i, j), (x, y)) | (i, x) ∈ R(α, σL) and (j, y) ∈ R(β, σR)}

Rr(α
∗
r , σL, σR) =

⋃
n∈N(Rr(α

n
r, σL, σR)), where α0

r is (?⊤, ?⊤), α1
r is defined as αr, and αn+1

r is αn
r ; αr for n ≥ 1

Fig. 12: Semantics of LDLREL programs and formulas

two copies of the program, renaming the program variables so
that the variables in the two copies are disjoint. Set the low-
security inputs in both copies to identical values but allow
the high-security inputs to take different values. Now, sequen-
tially compose these two programs together. If the composed
program can terminate in a state where the corresponding
low-security outputs differ, then the original program does
not satisfy noninterference; conversely, if in all executions of
the composed program, the low-security outputs are the same,
then the original program satisfies noninterference. Intuitively,
the composition of the two copies allows a single program to
represent two executions of the original program, reducing
checking a relational property of the original problem to
checking a safety property of the composed program.

Using the insights, we develop an encoding for dLREL. It
builds on two steps: (1) renaming a dLREL formula into an
equivalent one whose left and right programs use disjoint
variables, and (2) making a composition of the two programs.

Renaming dLREL Formulas. To help with renaming, we
define renaming functions that map all variables accessible
by the right execution/program to fresh variables.

Definition 1 (Renaming function for dLREL). For a dLREL

formula ϕr, a function ξ : VARR(ϕr) → V (where V is a
set of variables) is a renaming function for ϕr if:
1) ξ is a bijection;
2) For all x ∈ VARR(ϕr), ξ(x) ̸∈ VARL(ϕr);

Where function VARL(ϕr) and VARR(ϕr) return the set of
variables accessed by, respectively, the left and right execution.

We write ξ(ϕr) for the formula identical to ϕr but whose
variables accessible by the right execution have been renamed
according to ξ. Renaming functions similarly apply to dLREL

programs. We also write ξ(ω) for the state identical to ω but
whose domain variables have been renamed according to ξ.

From dLREL to dL. We develop a function π that will be
used to transform renamed dLREL formulas, i.e., ξ(ϕr), into
an equivalent dL formula. A key step of π is to convert
the biprogram construct (α, β) into a composition of α and

β. Also, it directly extracts the contents from all projection
constructs, e.g., ⌊ϕ⌋B and ⌊θ⌋B. The π is defined as follows:

Definition 2 (π for dLREL). For a dLREL formula ϕr whose
variables for the left and right executions are disjoint (i.e.,
VARL(ϕr) ∩ VARR(ϕr) = ∅), a function π that can transform
a dLREL formula ϕr (or a dLREL program αr) to an equivalent
dL formula (or program), is defined inductively as follows.
π(θr∼ δr) = π(θr) ∼ π(δr) π(αr ; βr) = π(αr) ; π(βr)

π(¬ϕr) = ¬π(ϕr) π(αr ∪βr) = π(αr)∪π(βr)
π(ϕr ∧ ψr) = π(ϕr) ∧ π(ψr) π(?ϕr) = ?π(ϕr)

π([|αr |]ϕr) = [π(αr)]π(ϕr) π(α∗
r) = (π(αr))

∗

π(⌊ϕ⌋B) = ϕ π((α, β)) = α ; β
And π(θr) on terms is inductively defined:

π(⌊θ⌋B) = θ π(θr⊕ δr) = π(θr) ⊕ π(δr)

Here, π(αr) considers only five program constructs since the
other constructs can be encoded with these five constructs.

Encoding Atomic Programs. The atomic programs of dLREL

are helpful for programmers to express interesting relational
properties of cyber-physical systems. However, they are just
syntactic sugar, i.e., they can be encoded with the other
program constructs of dLREL, as follows:

x := θ ≡ (x := θ, x := θ)

x := ∗ ≡ (x := ∗, x := ∗) ; ?(⌊x⌋L = ⌊x⌋R)

x′= θ&ϕ ≡ (t := 0, t := 0) ;

(x′= θ, t′= 1&ϕ, x′= θ, t′= 1&ϕ) ; ?(⌊t⌋L = ⌊t⌋R)
Atomic program x := θ can be encoded as a biprogram whose
left and right programs are the same. The constraint of nonde-
terministic assignment x := ∗ is encoded as a test of formula
(⌊x⌋L = ⌊x⌋R) to ensure the two executions have the same value
for variable x. The program x′= θ&ϕ can be encoded with
the help of a fresh continuous variable t to represent time. A
special differential equation t′= 1 is added to both executions
to represent the passage of time. The variable t is set to 0
before the physical evolution; a test of formula (⌊t⌋L = ⌊t⌋R)
is added after the biprograms of physical dynamics to enforce
the constraint that both evolutions last for the same duration.

With a renaming function ξ, we can encode a dLREL formula
ϕr as π(ξ(ϕr)). This encoding is sound and complete:

Theorem 3 (Soundness and completeness of the host logic
encoding for dLREL). For states ωL ωR, a dLREL formula ϕr,
and a renaming function ξ for ϕr,

(ωL, ωR) |=RL ϕr iff

((ωL ⇓ VARL(ϕr))⊗ (ξ(ωR ⇓ VARR(ϕr)))) |= π(ξ(ϕr))
Where ω ⇓ V denotes the projection of state ω on a set of
variables V: the map {x 7→ ω(x)} for all x ∈ V, and ⊗ means
the join of two non-overlapping states.

The proof can be done by simultaneous induction on ϕr and
αr. An important case is the biprogram (α, β). Intuitively, π
is sound for (α, β) because the semantics of dL and dLREL are
defined on state transitions and sequential composition of α
and β is semantically consistent with the semantics of (α, β).
More details about the proof can be found in the Appendix.

Verifying dLREL Formulas. With Theorem 3, we can verify
a dLREL formula ϕr by verifying a dL formula π(ξ(ϕr)).
Verifying dL formulas can done with the theorem prover
KeYmaera X [20]. We encode the example shown in Figure 10
(ϕrobust in particular) as a dL formula π(ξ(ϕrobust)), which
KeYmaera X is able to prove in a fully-automated manner.

Note that the function π sequentially composes the left and
right programs, i.e., π((α, β)) = α ; β. Though the encoding
based on this π is sound and complete, it may be challenging
to verify certain dLREL formulas with this encoding. Later in
the experiment, we discuss how to improve π and promote
verification by integrating techniques for general relational
reasoning and domain-specific relational reasoning.

A Host Logic Encoding for LDLREL. We have developed a
sound but incomplete encoding for LDLREL in LDLf (in the
appendix). This encoding is incomplete as LDLREL is strictly
more expressive than LDLf : it’s impossible to design a sound
and complete encoding of LDLREL in LDLf . We can use this
encoding to verify a subset of LDLREL formulas, especially,
loop-free formulas. However, the encoding won’t work for
formulas that contain lockstep loops.

B. Constraint-based Encoding

The second approach for verifying a REL formula is to
encode it as a set of constraints, i.e., logical formulas, and
then use SMT solvers like Z3 to find if the constraints are
satisfiable. We have developed such an encoding for LDLREL

that is both sound and complete: the LDLREL formula is
satisfiable if and only if the corresponding set of constraints is
satisfiable. The encoding for dLREL can be similarly developed.

Encoding for LDLREL. We use arrays of integers to encode
traces, where an integer represents a state. The integers can
be used as binary encodings, where each atomic proposition
corresponds to a unique bit in an integer. The presence or
absence of an atomic proposition in a state can then be
represented by the state’s binary encoding.

We use a universal quantifier to encode the necessity
modality and a predicate uninterpreted function to encode the

semantics of αr. Intuitively, the function returns true if its
arguments satisfy its semantics.

We develop a function, denoted S, that generates a set of
logical formulas for a LDLREL formula ϕr. Intuitively, S(ϕr)
starts with a first-order logic formula generated for an input
ϕr, and then adds the semantics of all programs involved in
ϕr to the output set. The function S builds on two functions:
the first function λ takes a LDLREL (or LDLf) formula and
returns a first-order logic formula; the second function µ
takes a program αr (or α) and returns a first-order formula
over uninterpreted functions that encodes the semantics of the
program. We introduce the definitions of λ and µ next, and
then present the definition of S(ϕr).

Definition 3 (λ for LDLREL). A function λ that takes a LDLREL

formula ϕr as input and outputs a first-order logical formula,
is defined as follows:

λ(¬ϕr, σL, σR, iL, iR) = ¬λ(ϕr, σL, σR, iL, iR)

λ(⌊ϕ⌋B, σL, σR, iL, iR) = λ(ϕ, σL, iL) if B = L else λ(ϕ, σR, iR)

λ(ϕr ∧ ψr, σL, σR, iL, iR) = λ(ϕr, σL, σR, iL, iR) ∧ λ(ψr, σL, σR, iL, iR)

λ([|αr |]ϕr, σL, σR, iL, iR) = ∀ kL kR, (kL < |σL| ∧ kR < |σR|
∧Fαr(σL, σR, iL, iR, kL, kR))

→ λ(ϕr, σL, σR, kL, kR)

The function λ extends to LDLf formulas:
λ(A, σ, i) = (binaryEnc(A)&&σ[i]) == binaryEnc(A)

λ(¬ϕ, σ, i) = ¬λ(ϕ, σ, i)
λ(ϕ ∧ ψ, σ, i) = λ(ϕ, σ, i) ∧ λ(ψ, σ, i)
λ([α]ϕ, σ, i) = ∀ k, ((i ≤ k < |σ|)∧Fα(σ, i, k)) → λ(ϕ, σ, k)

Most cases closely follow the semantics of the formulas and
programs. Note that λ(A, σ, i) checks if the atomic proposition
A holds at the state σ[i]. The binaryEnc(A) function returns the
integer that uniquely represents A. The check then proceeds
with Bitwise AND (&&) with the integer at σ[i]. The result
would be binaryEnc(A) if A holds at σ[i].
Fαr

(σL, σR, iL, iR, kL, kR) is a predicate uninterpreted function
to help encode the semantics of the program αr. It returns
true if ((iL, iR), (kL, kR)) ∈ Rr(αr, σL, σR). The semantics of αr

is encoded as a logical formula over Fαr
and uninterpreted

functions for programs relevant to defining the semantics of
αr. For example, by the semantics of αr ∪βr, we know the
following logical formula holds: Fαr ∪ βr

(σL, σR, iL, iR, jL, jR) ↔
(Fαr

(σL, σR, iL, iR, jL, jR)∨Fβr
(σL, σR, iL, iR, jL, jR)) where all pa-

rameters are universally quantified. This logical formula refers
to three uninterpreted functions: Fαr ∪ βr

, Fαr
, and Fβr

.
We develop a function µ to output a logical formula for an

input program αr. Note that the parameters of all uninterpreted
functions are (implicitly) universally quantified in the formulas
produced by µ.

Definition 4 (µ for LDLREL). A function µ that takes a LDLREL

program αr as input and outputs a first-order logical formula,
is defined as follows:
µ(αr ; βr) = Fαr ; βr(σL, σR, iL, iR, jL, jR) ↔

(∃ kL kR, (iL ≤ kL ≤ jL)∧ (iR ≤ kR ≤ jR)

∧Fαr(σL, σR, iL, iR, kL, kR)∧Fβr(σL, σR, kL, kR, jL, jR))

µ(αr ∪βr) = Fαr ∪ βr(σL, σR, iL, iR, jL, jR) ↔

(Fαr(σL, σR, iL, iR, jL, jR)∨Fβr(σL, σR, iL, iR, jL, jR))

µ(?ϕr) = F?ϕr(σL, σR, iL, iR, jL, jR) ↔
((iL == jL ∧ iR == jR)∧λ(ϕr, σL, σR, iL, iR))

µ(α∗
r) = Fα∗

r
(σL, σR, iL, iR, jL, jR) ↔

((iL == jL ∧ iR == jR)∨Fαr ; α∗
r
(σL, σR, iL, iR, jL, jR))

µ((α, β)) = F(α,β)(σL, σR, iL, iR, jL, jR) ↔
(Fα(σL, iL, jL)∧Fβ(σR, iR, jR))

The function µ extends to LDLf programs:
µ(α ; β) = Fα ;β(σ, i, j)↔(∃ k,(i ≤ k ≤ j)∧Fα(σ, i, k)∧Fβ(σ, k, j))
µ(α∪β) = Fα∪ β(σ, i, j)↔(Fα(σ, i, j) ∨ Fβ(σ, i, j))
µ(?ϕ) = F?ϕ(σ, i, j)↔(i == j ∧ λ(ϕ, σ, i))
µ(ϕAP) = FϕAP (σ, i, j)↔(j == i + 1 ∧ λ(ϕAP , σ, i))
µ(α∗) = Fα∗(σ, i, j)↔(j == i ∨ Fα ;α∗(σ, i, j))

With λ and µ, we define the following function S(ϕr)
that outputs a set of first-order logic formulas from an input
LDLREL formula ϕr. Intuitively, the set should be satisfiable if
and only if the ϕr is satisfiable. Specifically, the set contains
the first-order formula that encodes the input ϕr, as well as all
logical formulas that encode relevant (sub)program constructs.

Definition 5 (S(ϕr) for LDLREL). The set S(ϕr) is the minimum
set that contains the following:
• ∃σL σR, λ(ϕr, σL, σR, 0, 0) ∈ S(ϕr).
• For any logical formula fml ∈ S(ϕr), if fml contains an

uninterpreted function Fαr
(or Fα), then µ(αr) ∈ S(ϕr) (or

µ(α) ∈ S(ϕr)).

λ(ϕr, σL, σR, 0, 0) uses 0 as beginning indices as arrays are
0-indexed. The second part of the definition covers all possible
program constructs involved in all formulas or subformulas of
ϕr. S(ϕr) is the minimum set to avoid irrelevant formulas.

A notable case of S(ϕr) is when ϕr contains programs of the
form α∗

r (or µ(α∗)), e.g., [|α∗
r |]ϕr. The set S([|α∗

r |]ϕr) refers to
the uninterpreted function Fα∗

r
, so µ(α∗

r) ∈ S([|α∗
r |]ϕr). The

formula µ(α∗
r) refers to Fαr ; α∗

r
, so µ(αr ; α

∗
r) ∈ S([|α∗

r |]ϕr).
The formula µ(αr ; α

∗
r) refers back to Fα∗

r
, whereas µ(α∗

r) is
already in S([|α∗

r |]ϕr) (parameters are universally quantified).

Theorem 4 (Soundness and completeness of the constrain-
t-based encoding for LDLREL). A LDLREL formula ϕr is
satisfiable iff S(ϕr) is satisfiable.

The theorem holds since the definition of S(ϕr) closely
follows the semantics of LDLREL.
Verifying LDLREL formulas. We develop the set S(ϕr) for the
two example properties of the gridworld problem introduced
in Section V, and successfully verify them using Z3.
Constraint-based Encoding for dLREL. A constraint-based
encoding can be similarly developed for dLREL. The key
difference is how to encode the semantics of dLREL programs
which is based on state transitions. An approach is to use two
different sets of variables to represent the states before and
after program executions. For example, the function λ for a
dLREL formula [|αr |]ϕr can be defined as:

λ([|αr |]ϕr, x⃗) = ∀ y⃗,Fαr
(⃗x, y⃗) → λ(ϕr, y⃗)

Where x⃗ is the set of variables used by the formula [|αr |]ϕr,
and y⃗ is a set of fresh variables with the same dimension

Benchmarks
Variants

π πalign π∀∃ πode πsyn

Fig.10 (Fig.8 in [17]) A A A A A
Ex.2.1 in [19] S S S S
Ex.2.4 in [19] A A A A A
Ex.7.4 in [19] A A A A A
Ex.7.5 in [19] A A A
Ex.7.6 in [19] A A A

Ex.1 A A
Fig.8 in [31] S S
Cs.1 in [32] UA
Cs.2 in [32] UA

Fig. 13: Using variants of π to help verify more complicated
relational properties. For notation, Ex. and Cs. respectively de-
note the example properties and case studies in the cited work.
Contents in the table cells indicate how much automation can
KeYmaera X verify the generated dL formulas. Notations A,
S, and UA mean, respectively, fully automated, automated with
less than 3 manual proof steps, and automated after user inputs.

as x⃗. The two sets respectively capture the states before and
after executing the program αr, whose semantics is denoted by
the uninterpreted function Fαr

(⃗x, y⃗). Then µ produces logical
formulas over uninterpreted functions like Fαr

(⃗x, y⃗).
Another challenge is how to specify the semantics of

dynamics, i.e., differential equations. We can leverage existing
work on computing the weakest preconditions (or strongest
postconditions) for hybrid programs [29], [30]. For complex
dynamics, their semantics are often specified as differential
invariants, i.e., invariants that hold during the evolution of the
dynamics. Differential invariants are often first-order formulas.

C. Verification with Improved Translations

The π and λ functions translate REL formulas to formulas
that can be verified by existing tooling. These translations
open great opportunities to utilize recent (and future) advances
in both (1) general relational reasoning, and (2) domain-
specific relational reasoning. Using dLREL as an example, we
show how to improve the verification power of a translation
by retrofitting it with existing and new reasoning techniques.

In particular, we develop four variants of π, each with
increasing verification power, achieved by incorporating ad-
ditional heuristics in π. We either develop these heuristics
or adapt them from prior work. We test these variants on
a set of benchmarks, by (1) applying these variants on the
benchmarks to generate dL formulas, and then (2) use the
theorem prover KeYmaera X to verify the generated formulas.
Figure 13 shows the benchmarks and the results.
Benchmarks. The benchmarks include a set of example
properties from this paper and some existing work. In par-
ticular, we collect many motivating examples from [19], as
it focuses on Kleene Algebra with Tests, which is directly
relevant to dynamics logics. We are able to verify all examples
from [19], except for two examples that require native support

of integers (Ex.2.2) and arrays (Ex.2.3), which are not natively
supported by KeYmaera X. In addition, we verify a few other
representative and non-trivial case studies from existing work.

We elaborate on the four variants of π and their correspond-
ing results. Note that, as shown in Figure 13, the default π can
automatically verify three of these benchmarks.

πalign: π + heuristics on alignment. As shown by existing
work [19], [18], verifying relational properties often requires
effective alignment of programs and computations so that
relational invariants can be easier specified. Consider the
following property from existing work [19] written in dLREL:

⌊n⌋L=⌊n⌋R→[| i := n ; r := 1 |]

[| (body∗, body∗); (?i = 0, ?i = 0) |]⌊r⌋L = ⌊r⌋R

Where the loop body is body ≡ ?i ̸= 0; r := r × i; i := i − 1.
An effective alignment for verifying this property is to rewrite
(body∗, body∗) into (body, body)∗ which run the left and right
executions in lockstep. We develop πalign that adds into π a
heuristic that encodes a proof rule from existing work (Rule
(3) from [19]) that soundly performs such a rewrite. Apply
πalign to the property above produces a dL formula that can be
verified with KeYmaera X with only one manual proof step.

π∀∃: πalign + ∀∃ heuristics. Certain ∀ ∃ properties on loops
can be reduced to ∀ ∀ properties for easier verification. In
particular, the following reasoning is sound, as the lockstep
of (α, β)∗ presents a witness for the ∀ ∃ property:

if ϕr→[| (α, β)∗ |]ψr then ϕr→[|(α∗, β∗)⟩⟩ψr

This rule can be generalized to support reasoning with more
program constructs, such as [|(α1; α

∗; α2, β1; β
∗; β2)⟩⟩ψr.

We develop π∀∃ by adding these ∀∃ rules above into πalign,
and test it on benchmarks from existing work (Ex.7.5 and
Ex.7.6 from [19]). KeYmaera X is able to verify the generated
dL formulas automatically.

πode: π∀∃ + heuristics on dynamics. The translations πalign

and π∀∃ can help reason with general relational properties;
they are applicable to different REL extensions. Moreover,
these translations open opportunities towards better domain-
specific relational reasoning that focuses on the domain-
specific parts of the host logics. For example, consider the
following example on a relationship between two dynamics
of exponential decay:

⌊x⌋L≥⌊x⌋R ∧ ⌊x⌋L ≥ 0∧A > 0∧A ≥ B→
[|(x′ = A × x, x′ = B × x)⟩⟩⌊x⌋L≥⌊x⌋R (1)

Using the aforementioned translations, this property cannot be
verified with KeYmaera X. However, this ∀ ∃ property should
hold since the x value of the right dynamic would always be
lower if the two dynamics evolve for the same duration of
time. We can derive heuristics based on this observation. Con-
sider a formula of the form ϕr→[|(x′= θ&ϕ1, y′= δ&ϕ2)⟩⟩ψr

(this formula has been properly renamed, so the left and
right programs refer to disjoint sets of variables). After ap-
plying the π function, we get a dL formula of the form:
ϕ→[x′= θ&ϕ1]⟨y′= δ&ϕ2⟩ψ, which can be reasoned with the
following heuristic:

if ϕ→[x′= θ, y′= δ&(ϕ1 ∧ ϕ2)]ψ

and ϕ→[x′= θ, y′= δ](ϕ1 → ϕ2)

then ϕ→[x′= θ&ϕ1]⟨y′= δ&ϕ2⟩ψ
The first condition of this heuristic merges two dynam-
ics into one and forces the two dynamics to evolve
for the same duration of time. A formula of the form
ϕ→[x′= θ, y′= δ&(ϕ1 ∧ ϕ2)]ψ is often easier to prove. The
second condition on evolution constraints indicates there exists
executions of the right dynamics if the left has valid execu-
tions. The second condition is needed to ensure there exists
an execution of β for a [|(α, β)⟩⟩ϕr modality.

We develop πode by adding this heuristic into π∀∃, and
we manage to automatically verify EQ.1 in KeYmaera X. In
addition to Eq.1, we apply πode to a non-trivial case study
on a water tank from existing work [?]. Its main property is
a ∀ ∃ one on a system-level model of the water tank. The
function πode first applies the heuristic added in π∀∃, and then
applies the heuristic added in πode. We manage to verify the
dL formula generated by πode on this property with only one
manual proof step.

πsyn: πode + User Inputs. We further investigate the utility
of the translation by adding a heuristic derived from recent
work on relational verification of ∀ ∀ properties on dynam-
ics (Thm.24[32]). The heuristic aims to reason with dLREL

formulas like the following:
ϕr→[| (x′= θ&ϕ1, y′= δ&ϕ2) |]ψr

However, instead of fixing the duration passed by the left and
right dynamics as in πode, this heuristic asks for user inputs
that would allow the two dynamics to synchronize at different
time points, e.g., compare the values of x and y after the left
and right dynamics evolve for different durations.

We develop πsyn that asks users to provide inputs when
it sees appropriate dLREL formulas, and then produces cor-
responding dL formulas. We test πsyn with two case studies
from [32]: after obtaining the correct inputs, πsyn produces dL
formulas that can be automatically verified by KeYmaera X.

We have demonstrated that we can integrate existing and
new techniques into the translation for dLREL, to promote
its power in verifying general relational properties, as well
as domain-specific ones. Note that we manually develop all
these variants of π. How to systematically integrate different
techniques is an interesting future work.

VII. RELATED WORK

BiKAT. The closest related work is the BiKAT [19], an
extension of KAT to help reason with the alignments of
relational properties through equational reasoning. A main
focus of BiKAT is to ensure adequacy: the aligned program
should capture all computations of the originial program. Our
biprogram construct is analogous to the design in BiKAT.
However, a major difference between our work and BiKAT
is applicability: the main focus of BiKAT is alignments of
two programs, while we also concern domain-specific reason-
ing. The reasoning rules for BiKAT can be encoded in the
translations (as shown in Section VI-C), but BiKAT cannot
be used to reason with many dLREL formulas. In addition, the

design of modalities promotes expressing complex relational
properties concisely, which is not a motivation behind BiKAT.

Relational Reasoning for Dynamic Logic. Beckert et al.
have done a series of work on extending dynamic logic with
trace modalities [33], [34], [35]. They further apply trace
modalities to check secure information flow in the setting
of concurrent programs [35]. Their work focus on first-order
dynamic logic with deterministic programs. The limitation to
deterministic programs is significant because nondeterminism
is essential to the utility of dynamic logics, especially in AI-
enabled systems [36]. Gutsfeld et al. introduce an expressive
extension to propositional dynamic logic to check hyperprop-
erties by introducing path quantifiers [37]. Algorithms for
model checking these hyperproperties are introduced. Tool
support is left for future work. In comparison, the REL
extension goes beyond propositional dynamic logic, and it can
reuse existing tools to verify relational properties.

Relational Reasoning for Differential Dynamic Logic.
Various approaches have been proposed to analyze specific
relational properties in dL. A primitive is introduced to express
a refinement relation between two hybrid programs [38]. An
expressive modal logic based on dL has been introduced to
reason with nondeducibility [39]. Neither work provides tool
support. Kolčák et al. introduce a relational extension of dL
that focuses on reasoning about ∀ ∀ on two dynamics [32]. Our
translation for dLREL is able to integrate this work. Xiang et al.
introduce a formal framework in the setting of dL for modeling
and analyzing the robustness of cyber-physical systems under
sensor attacks [17]. In our case study for dL, we express
and verify this robustness property with dLREL, which is more
succinct than the original example.

Biprogram. Our biprogram is an adaptation of the work of
Pottier and Simonet on information flow analysis for ML [10].
The work introduces an extension of ML that encodes a
pair of ML terms as a single bracket construct. The bracket
constructs cannot be nested. This is analogous to our design in
that the biprogram contains two programs of the host logics.
This bracket-based approach has been often used in proving
noninterference, e.g., [40], [41]. The name “biprogram” is also
used in other recent work on relational reasoning [11], [19].

Relational Program Logic. Another approach for relational
verification is to use relational program logic [42], [43],
[44]. Benton introduced Relational Hoare Logic for verifying
program transformations [42], which provides a general frame-
work for relational correctness proofs. Recent work proposes
a notion to evaluate the design of Relational Hoare Logic [44].
Sousa and Dillig introduce a program logic, named Cartesian
Hoare Logic (CHL), for verifying k-safety properties [45]. The
work has been further extended for proving the correctness
of 3-way merge [46]. They introduce a generalized form of
Hoare triples to express relations between different program
executions, and use SMT solvers to determine their satisfia-
bility. D’Osualdo et al. [47] describe a logic for hyper-triple
composition (LHC) based on weakest preconditions that can
decompose a hypersafety proof along the boundary of hyper
tuples, offering ways of combining multiple k-safety proofs.

These relational program logics often are based on weakest
pre-condition and only support ∀ ∀ pre/post k-safety properties.
In contrast, the REL extensions naturally support properties
with mixed modalities. Moreover, the translations for REL
extensions open opportunities in combining general relational
reasoning and and domain-specific reasoning. We believe these
relational program logics can be also integrated as a part of
the translations, which we leave to future work.

Self-Composition and Product Program. The encodings
introduced in this work are inspired by self-composition,
which is a common approach for relational reasoning [13],
[48], [49], [50]. Approaches based on self-composition are
often syntax-directed, that is, they compose two programs
that have similar, if not identical, syntactic constructs. Al-
ternatively, property directed self-composition [18] tackles
programs that cannot be easily aligned in a composition. It
composes programs (or copies of the same program) by finding
good alignment between the copies in order to have expressible
assertions. The encodings in this work can be viewed as special
kinds of self-compositions that shall be adapted for different
host logics. The encoding can benefit from advances in self-
composition, as we have shown in Section VI-C.

Other Related Work. Noninterference is a well-known
relational property for secure information flow and has been
widely studied, e.g., [10], [51], [52], [53], [54]. REL extensions
bring in several major benefits for properties like noninterfer-
ence. First, noninterference reasons about program executions,
and modalities in REL capture executions intuitvely. Different
variants of noninterference can be concisely expressed, as
shown in the examples of Section III. Second, the notion of
noninterference can be easily extended to different domains
(host logics), as the REL extension connects the common
program constructs with domain-specific constructs. And third,
verifying noninterference can leverage more existing tools, as
the translations can integrate different techniques.

Relational verification has been studied in the setting of
temporal-style logics, such as HyperLTL and HyperCTL, have
been introduced to model relational properties [55], [56], [22],
[37]. Model checking is often used in verify these properties.
In contrast, REL extensions are more expressive on program
behaviors than logics like HyperLTL and HyperCTL. Trans-
lations for the extensions may leverage the model checkers
for HyperLTL or HyperCTL if the correct heuristics are
developed, which we leave to future work.

VIII. CONCLUSION

We introduce a general and lightweight relational extension
for dynamic logics. Though we don’t have a formal proof
of the applicability, we expect that the extension can be
instantiated for almost any dynamic logic, in the same way
that one would expect that almost any dynamic logic could
be extended (syntactically and semantically) with first-order
operators. Verifying REL formulas can leverage existing tools
developed for the host logics. More importantly, the encodings
for a REL extension open opportunities to combine techniques

of general relational reasoning and domain-specific relational
reasoning, which may greatly promote proof automation.

Future work One immediate next step is to systemati-
cally integrate techniques for general relational reasoning and
domain-specific relational reasoning into the encoding. Proof
automation with the translations is also an interesting future
work.

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” Journal on Selected Areas in Communications, vol. 21, no. 1, pp.
5–19, 2003.

[2] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[3] Y. Satake and H. Unno, “Propositional dynamic logic for higher-order
functional programs,” in CAV, 2018, pp. 105–123.

[4] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ul-
brich, Deductive Software Verification–The KeY Book: From Theory to
Practice. Springer, 2016, vol. 10001.

[5] A. Platzer, “Differential dynamic logic for hybrid systems,” Journal of
Automated Reasoning, vol. 41, no. 2, pp. 143–189, 2008.

[6] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. MIT Press, 2000.
[7] A. Platzer, Logical foundations of cyber-physical systems. Springer,

2018, vol. 662.
[8] A. Platzer, “The complete proof theory of hybrid systems,” in LICS,

2012, pp. 541–550.
[9] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear

dynamic logic on finite traces,” in IJCAI, 2013.
[10] F. Pottier and V. Simonet, “Information flow inference for ML,” in

POPL, 2002, pp. 319–330.
[11] A. Banerjee, R. Nagasamudram, D. A. Naumann, and M. Nikouei, “A

relational program logic with data abstraction and dynamic framing,”
arXiv preprint arXiv:1910.14560, 2019.

[12] A. Platzer, “A complete uniform substitution calculus for differential
dynamic logic,” Journal of Automated Reasoning, vol. 59, no. 2, pp.
219–265, 2017.

[13] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by
self-composition,” in CSF, 2004, pp. 100–114.

[14] D. Kozen, “Kleene algebra with tests,” TOPLAS, vol. 19, no. 3, pp.
427–443, 1997.

[15] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in S&P, 1982, pp. 11–20.

[16] P. Allen, “A comparison of non-interference and non-deducibility using
CSP,” in CSF, 1991, pp. 43–44.

[17] J. Xiang, N. Fulton, and S. Chong, “Relational analysis of sensor attacks
on Cyber-Physical Systems,” in CSF, 2021.

[18] R. Shemer, A. Gurfinkel, S. Shoham, and Y. Vizel, “Property directed
self composition,” in CAV, 2019, pp. 161–179.

[19] T. Antonopoulos, E. Koskinen, T. C. Le, R. Nagasamudram, D. A. Nau-
mann, and M. Ngo, “An algebra of alignment for relational verification,”
PLDI, vol. 7, pp. 573–603, 2023.

[20] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems,” in CADE,
2015, pp. 527–538.

[21] H. Rahmani and J. M. O’Kane, “Optimal temporal logic planning with
cascading soft constraints,” in IROS, 2019, pp. 2524–2531.

[22] Y. Wang, S. Nalluri, and M. Pajic, “Hyperproperties for robotics:
Planning via HyperLTL,” in ICRA, 2020, pp. 8462–8468.

[23] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and
F. Dellaert, “Distributed trajectory estimation with privacy and commu-
nication constraints: a two-stage distributed Gauss-Seidel approach,” in
ICRA, 2016, pp. 5261–5268.

[24] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity
in security applications of DES,” in WODES, 2008, pp. 328–333.

[25] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell, “Coordinated
multi-robot planning while preserving individual privacy,” in ICRA,
2019, pp. 2188–2194.

[26] N. Francez, “Product properties and their direct verification,” Acta
informatica, vol. 20, no. 4, pp. 329–344, 1983.

[27] T. Terauchi and A. Aiken, “Secure information flow as a safety problem,”
in SAS, 2005, pp. 352–367.

[28] D. A. Naumann, “Thirty-seven years of relational hoare logic: remarks
on its principles and history,” in ISoLA, 2020, pp. 93–116.

[29] S. Foster, J. J. Huerta y Munive, M. Gleirscher, and G. Struth, “Hybrid
systems verification with Isabelle/HOL: Simpler syntax, better models,
faster proofs,” in FM, ser. LNCS, vol. 13047. Springer, 2021, pp.
367–386.

[30] J. J. Huerta y Munive and G. Struth, “Predicate transformer semantics
for hybrid systems,” Journal of Automated Reasoning, vol. 66, no. 1,
pp. 93–139, 2022.

[31] J. Xiang, R. Lanotte, S. Tini, S. Chong, and M. Merro, “Measuring ro-
bustness in cyber-physical systems under sensor attacks,” arXiv preprint
arXiv:2403.05829, 2024.

[32] J. Kolčák, J. Dubut, I. Hasuo, S.-y. Katsumata, D. Sprunger, and
A. Yamada, “Relational differential dynamic logic,” in TACAS, 2020,
pp. 191–208.

[33] B. Beckert and S. Schlager, “A sequent calculus for first-order dynamic
logic with trace modalities,” in IJCAR, 2001, pp. 626–641.

[34] B. Beckert and D. Bruns, “Dynamic logic with trace semantics,” in
CADE, 2013, pp. 315–329.

[35] D. Grahl, “Deductive verification of concurrent programs and its appli-
cation to secure information flow for Java,” Ph.D. dissertation, Karlsruhe
Institute of Technology, 29 Oct. 2015.

[36] N. Fulton and A. Platzer, “Verifiably safe off-model reinforcement
learning,” in TACAS, 2019, pp. 413–430.

[37] J. O. Gutsfeld, M. Müller-Olm, and C. Ohrem, “Propositional dynamic
logic for hyperproperties,” in CONCUR, 2020.

[38] S. M. Loos and A. Platzer, “Differential refinement logic,” in LICS,
2016, pp. 505–514.

[39] B. Bohrer and A. Platzer, “A hybrid, dynamic logic for hybrid-dynamic
information flow,” in LICS, 2018, pp. 115–124.

[40] L. Zheng and A. C. Myers, “Dynamic security labels and static informa-
tion flow control,” International Journal of Information Security, vol. 6,
no. 2-3, pp. 67–84, 2007.

[41] O. Arden and A. C. Myers, “A calculus for flow-limited authorization,”
in CSF, 2016, pp. 135–149.

[42] N. Benton, “Simple relational correctness proofs for static analyses and
program transformations,” in POPL, 2004, pp. 14–25.

[43] H. Yang, “Relational separation logic,” Theoretical Computer Science,
vol. 375, no. 1-3, pp. 308–334, 2007.

[44] R. Nagasamudram and D. A. Naumann, “Alignment completeness for
relational hoare logics,” in LICS, 2021, pp. 1–13.

[45] M. Sousa and I. Dillig, “Cartesian hoare logic for verifying k-safety
properties,” in PLDI, 2016, pp. 57–69.

[46] M. Sousa, I. Dillig, and S. K. Lahiri, “Verified three-way program
merge,” in OOPSLA, 2016, pp. 145–164.

[47] E. D’Osualdo, A. Farzan, and D. Dreyer, “Proving hypersafety compo-
sitionally,” in OOPSLA2, 2022, pp. 289–314.

[48] Á. Darvas, R. Hähnle, and D. Sands, “A theorem proving approach to
analysis of secure information flow,” in PerCom, 2005, pp. 193–209.

[49] G. Barthe, J. M. Crespo, and C. Kunz, “Relational verification using
product programs,” in FM, 2011, pp. 200–214.

[50] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program
alignment for equivalence checking,” in PLDI, 2019, pp. 1027–1040.

[51] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, “Flexible dynamic
information flow control in Haskell,” in Haskell, 2011, pp. 95–106.

[52] J. Xiang and S. Chong, “Co-Inflow: coarse-grained information flow
control for Java-like languages,” in S&P, 2021.

[53] M. Balliu, M. Dam, and G. Le Guernic, “Epistemic temporal logic for
information flow security,” in PLAS, 2011, pp. 1–12.

[54] A. Chudnov and D. A. Naumann, “Assuming you know: Epistemic
semantics of relational annotations for expressive flow policies,” in CSF,
2018, pp. 189–203.

[55] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in POST, 2014,
pp. 265–284.

[56] R. Beutner and B. Finkbeiner, “Autohyper: Explicit-state model checking
for HyperLTL,” in TACAS, 2023, pp. 145–163.

APPENDIX

A. Proof of Theorem 2

LDLREL has at least the expressive power of LDLf , since
all LDLf formulas can be encoded in LDLREL as projection
formulas. We focus on proving that some LDLREL formulas
cannot be expressed with LDLf . We proceed by disproving the
following: for all LDLREL formula ϕr, and trace σL, σR, there
exists a LDLf formula ϕ, a trace σϕ constructed by interleaving
trace σL and σR such that (σL, σR) |=RL ϕr if and only if σϕ |= ϕ.

As a counterexample, we show that ϕ cannot be encoded
as a regular expression. Consider the following formula ϕr:

⟨⟨(a ; a, b)∗ ⟩⟩⟨⟨(?⊤,¬b)∗ ⟩⟩(⌊¬a⌋L ∧ ⌊b⌋R)

∧ ⟨⟨(a, b)∗ ⟩⟩⟨⟨(a,¬b)∗ ⟩⟩(⌊¬a⌋L ∧ ⌊b⌋R)
Where, a (or b) is an atomic proposition of the left trace σL (or
right trace σR). This LDLREL formula is satisfiable by a pair
of traces, σL and σR, if (1) the number of states in σR where
b holds is the same as the number of states in σR where ¬b
holds, (2) the number of states in σL where a holds is twice the
number of states in σR where b (or ¬b) holds, and (3) σL and
σR end, respectively, with a state where ¬a and b hold. For
example, σL and σR can be, respectively, a2k(¬a) and bk(¬b)kb,
for some k > 0. Here, the notation a2k¬a means σL is a trace
with 2k+1 states, where the first 2k states satisfy a and the
last state satisfies ¬a.

Suppose that there exist a LDLf formula ϕ and a trace
σϕ constructed by interleaving trace σL and σR, such that
(σL, σR) |=RL ϕr if and only if σϕ |= ϕ. Assume ϕ is a regular
language. Traces that satisfy ϕ (e.g., σϕ) correspond to strings
in the language. Let L denote the language specified by ϕ, and
so by the pumping lemma, there exists an integer n ≥ 1, such
that for all string (traces) w ∈ L with |w | ≥ n, there exist
x, y, z such that w = xyz, and (1) |xy | ≤ n, (2) |y | ≥ 1, and
(3) for all i ≥ 0 : xyiz ∈ L. Assume that an integer n exists as
required by the lemma. Let w be a string that has 2n instances
of a, n instances of b and ¬b before the last state on atomic
proposition b, and its last state for proposition a (or b) satisfies
¬a (or b). Then, for xyiz to satisfy the second conjunct of ϕr,
y can only be a substring that contains the same number of
a and b, since |xy | ≤ n and w should have n instances of b
followed by n instances of ¬b. Assume y contains j instances
of a and b, then xz (i.e., i=0) would have 2n − j instances of
a and n − j instances of b. Such a string contradicts the first
conjunct, in particular, the part of (a ; a, b)∗. Thus, xyiz cannot
satisfy the first conjunct for all i ≥ 0. So ϕ cannot be regular.

B. Proof of Theorem 3

We use ωL ⊗ϕr ωR as a shorthand of ((ωL ⇓ VARL(ϕr)) ⊗
(ωR ⇓ VARR(ϕr))). Same notations apply for dLREL terms and
programs. We write ω ⇓α to mean ω ⇓ VAR(α), which also
applies to terms and formulas, and dLREL terms, programs, and
formulas. We write IH for induction hypothesis. In induction
on ϕr, we only consider the following cases: θr1

∼ θr2
, ⌊ϕ⌋B,

¬ϕr, ϕr ∧ ψr, and ⟨⟨αr ⟩⟩ϕr. Other formulas can be encoded.

Lemma 1 (Renaming preserves term value). For states ωL, ωR,
a dLREL term θr and a renaming function ξ on θr,

(ωL, ωR)JθrKRL = (ωL, ξ(ωR))Jξ(θr)KRL

Proof. By induction on θr. 2

Lemma 2 (Renaming preserves formula value). For states
ωL, ωR, a dLREL formula ϕr and a renaming function ξ of ϕr,

(ωL, ωR) |=RL ϕr iff (ωL, ξ(ωR)) |= ξ(ϕr)
Proof. By induction on ϕr (and simultaneous induction on

αr for programs), and Lemma 1. 2

Lemma 3. For a dLREL formula ϕr such that VARL(ϕr) ∩
VARR(ϕr) = ∅, then VARL(ψr) ∩ VARR(ψr) = ∅ for all
subformulas ψr in ϕr.

Proof. By simultaneous induction on ϕr and αr. 2

Similar lemmas exist for subprograms and subterms in ϕr.
Lemma 4. For a state ω, a formula ϕ such that VAR(ϕ) ⊆
VAR(ω), then ω |= ϕ iff (ω⇓ϕ) |= ϕ.

Proof. By the semantics of |= and induction on ϕ (and α
for programs). 2

Lemma 5. For states ω1, ω2, a formula ϕ such that VAR(ω1)∩
VAR(ω2) = ∅, if ω1 |= ϕ then ω1 ⊗ ω2 |= ϕ.

Proof. By induction on the number of variables in ω1. 2

Lemma 6. For states ωL, ωR, νL, νR, programs α, β such that
VAR(α)∩VAR(β) = ∅, then (ωL, νL) ∈ JαK and (ωR, νR) ∈ JβK
iff (ωL ⇓α⊗ ωR ⇓β, νL ⇓α⊗ νR ⇓β) ∈ Jα ; βK.

Proof. By Lemma 4 and the semantics. 2

Lemma 7. For states ωL, ωR, ω1, ω2, a formula ϕr such that
VAR(ω1) ∩ VARL(ϕr) = ∅, VAR(ω2) ∩ VARR(ϕr) = ∅,
VARL(ϕr) ⊆ VAR(ωL), VARR(ϕr) ⊆ VAR(ωR), VARL(ϕr) ∩
VARR(ϕr) = ∅, (ωL⊗ω1, ωR⊗ω2) |=RL ϕr, then (ωL, ωR) |=RL ϕr.

Proof. By simultaneous induction on ϕr and αr. 2

Lemma 8. For states ωL, ωR, ω1, ω2, a formula ϕr such that
VAR(ω1) ∩ VAR(ωL) = ∅, VAR(ω2) ∩ VAR(ωR) = ∅,
VARL(ϕr)∩VARR(ϕr) = ∅, (ωL, ωR) |=RL ϕr, then (ωL⊗ω1, ωR⊗
ω2) |=RL ϕr.

Proof. By simultaneous induction on ϕr and αr. 2

Lemma 9. For states ωL, ωR, a dLREL term θr that VARL(θr)∩
VARR(θr) = ∅, then (ωL, ωR)JθrKRL = (ωL ⊗θr ωR)Jπ(θr)K

Proof. By induction on θr. 2

Lemma 10. For a state ω, a dLREL formula ϕr that VARL(ϕr)∩
VARR(ϕr) = ∅ and ω |= π(ϕr), then (ω ⇓ VARL(ϕr), ω ⇓
VARR(ϕr)) |=RL ϕr.

Proof. By induction on ϕr (and simultaneous induction on
αr for programs):

• Case ϕr is of the form θr∼ δr: by Lemma 9.
• Case ϕr is of the form ⌊ϕ⌋B: by the definition of π and

case analysis of B.
• Case ϕr is of the form ¬ψr: by IH.
• Case ϕr is of the form ϕr1

∧ ϕr2
: by IH and Lemma 8.

• Case ϕr is of the form ⟨⟨αr ⟩⟩ψr: Cases αr1
; βr2

, αr1
∪βr2

,
?ϕr, and α∗

r1 can be proved using IH and Lemma 8.
For the case that αr is of the form (α, β): by the
semantics of dLREL programs, we know that there exists
ν1, ν2 such that (ω, ν1) ∈ JαK, (ν1, ν2) ∈ JβK, and
ν2 |= π(ψr). Also, ω ⇓ VARR(ϕr) = ν1 ⇓ VARR(ϕr)
and ν1 ⇓ VARL(ϕr) = ν2 ⇓ VARL(ϕr). Thus, we know
((ω ⇓ VARL(ϕr), ω ⇓ VARR(ϕr)), (ν2 ⇓ VARL(ϕr), ν2 ⇓

VARR(ϕr))) ∈ J(α, β)KRL Then by the semantics of dLREL

programs, IH, and Lemma 7, this case is proven.
That concludes the proof. 2

Lemma 11. For states ωL ωR, a dLREL formula ϕr that
VARL(ϕr) ∩ VARR(ϕr) = ∅,

(ωL, ωR) |=RL ϕr iff (ωL ⊗ϕr ωR) |= π(ϕr)

Proof. Both directions can be proved by induction on ϕr
(and simultaneous induction on αr for programs). Many cases
use Lemma 3 and 5, which we refer to as the auxiliary lemmas.
We first prove if (ωL, ωR) |=RL ϕr then (ωL ⊗ϕr ωR) |= π(ϕr):

• Case ϕr is of the form θr∼ δr: by examining the definition
of π and Lemma 9.

• Case ϕr is of the form ⌊ϕ⌋B: by examining the definition
of π and case analysis of B.

• Case ϕr is of the form ¬ψr: by IH.
• Case ϕr is of the form ϕr1

∧ ϕr2
: by IH and the auxiliary

lemmas.
• Case ϕr is of the form ⟨⟨αr ⟩⟩ψr: cases αr1

; βr2
, αr1

∪βr2
,

?ϕr, and α∗
r1 can be proved using IH and auxiliary

lemmas. For the case of (α, β): by the semantics of dLREL

programs, there exists νL, νR such that (ωL, νL) ∈ JαK and
(ωR, νR) ∈ JβK, then by IH and Lemma 6.

The other direction can be proven by Lemma 10 and 8. 2

Proof of Theorem 3. By Lemma 11 and 2. 2

C. Encoding LDLREL Formulas with LDLf

We develop a π for LDLREL based on the following insight:
a LDLREL formula (after renaming) is satisfiable if it is a
conjunction of a characterization of the left trace and a
characterization of the right one. Consider again the formula
⟨⟨(a, b)⟩⟩⌊⊤⌋R ∧ ⟨⟨(?⊤,¬b)⟩⟩⌊⊤⌋R, it is satisfiable if and only
if two LDLf formulas are satisfiable: ⟨a⟩⊤ (left trace) and
⟨b⟩⊤ ∧ ⟨¬b⟩⊤ (right trace). Since the two formulas refer to
different variables, a single trace that satisfies their conjunction
corresponds to a pair of traces that satisfy the LDLREL formula.

For a LDLREL formula ϕr, there could be many such LDLf

conjunctions each of which is satisfiable only if ϕr is satis-
fiable. These conjunctions correspond to different execution
paths introduced by disjunction and nondeterministic choice
in ϕr. For example, a LDLREL formula ⟨⟨((a ; a)∪ a, b)⟩⟩⌊⊤⌋R

is satisfiable if either of the following LDLf formulas is
satisfiable: ⟨a⟩⊤ ∧ ⟨b⟩⊤ or ⟨a ; a⟩⊤ ∧ ⟨b⟩⊤.

Using these insights, we develop π to find a set of LDLf

conjunctions each of which is satisfiable only if the input
LDLREL formula is satisfiable. π is sound but incomplete: it is
a partial function that works on a subset of LDLREL formulas.
For formulas of the form ⟨⟨α∗

r ⟩⟩ϕr, π unfolds the loop for a
finite number of times. It considers some possible execution
paths of αr, but not all of them. For formulas of the form
[|α∗

r |]ϕr, the π function can only process the formula if αr is
test-only, i.e., its left and right programs are both test-only.

We put LDLREL formulas in negation normal form, by
exploiting abbreviations and pushing negation inside (e.g.,
¬[|αr |]ϕr = ⟨⟨αr ⟩⟩¬ϕr) as much as possible, leaving negations

only in front of atomic formulas. Essentially, we restrict our
attention to LDLREL formulas formed by the following syntax:
ϕr, ψr ::= ⌊ϕ⌋B | ¬⌊ϕ⌋B | ϕr ∨ ψr | ϕr ∧ ψr | ⟨⟨αr ⟩⟩ϕr | [|αr |]ϕr

αr, βr ::= (α, β) | αr ; βr | αr ∪βr | α∗
r | ?ϕr

Definition 6 (π for LDLREL). For a LDLREL formula ϕr that
VARL(ϕr)∩VARR(ϕr)=∅, a partial function π that produces
a set of pairs of LDLf formulas is inductively defined:

π(⌊ϕ⌋B)≡{(ϕ, ?⊤)} if B=L or {(?⊤, ϕ)} if B=R

π(¬⌊ϕ⌋B)≡{(¬ϕ, ?⊤)} if B=L or {(?⊤,¬ϕ)} if B=R

π(ϕr ∧ ψr)≡π(ϕr)⊗ π(ψr) where SA ⊗ SB is defined as

{(ϕ ∧ ϕ′, ψ ∧ ψ′) | (ϕ, ψ) ∈ SA,(ϕ′, ψ′) ∈ SB}
π(ϕr ∨ ψr)≡π(ϕr) ∪ π(ψr) where ∪ is set union

π(⟨⟨αr ; βr ⟩⟩ϕr)≡π(⟨⟨αr ⟩⟩⟨⟨βr ⟩⟩ϕr)

π(⟨⟨αr ∪βr ⟩⟩ϕr)≡π(⟨⟨αr ⟩⟩ϕr ∨ ⟨⟨βr ⟩⟩ϕr)

π(⟨⟨α∗
r ⟩⟩ϕr)≡

{
π(⟨⟨αr ⟩⟩ϕr) if αr is test-only
π(⟨⟨(?⊤, ?⊤) ∪ αr ∪ · · ·αn

r ⟩⟩ϕr) else

π(⟨⟨?ψr ⟩⟩ϕr)≡π(ψr ∧ ϕr)

π(⟨⟨(α, β)⟩⟩ϕr)≡{(⟨α⟩ϕ, ⟨β⟩ψ) | (ϕ, ψ) ∈ π(ϕr)}
π([|αr ; βr |]ϕr)≡π([|αr |][|βr |]ϕr)

π([|αr ∪βr |]ϕr)≡π([|αr |]ϕr ∧ [|βr |]ϕr)

π([|α∗
r |]ϕr)≡π([|αr |]ϕr) if αr is test-only

π([|?ψr |]ϕr)≡π(ϕr ∨ ¬ψr)

π([| (α, β) |]ϕr)≡


π(ϕr) if α, β = ?⊤
{([α]ϕ, [β]ψ)} else if π(ϕr) = {(ϕ, ψ)}
π([| (α, ?⊤) |][| (?⊤, β) |]ϕr) else if α, β ̸=?⊤
cases below else

π([| (α∪β, ?⊤) |]ϕr)≡π([| (α, ?⊤) |]ϕr ∧ [| (β, ?⊤) |]ϕr)

π([| (?⊤, α∪β) |]ϕr)≡π([| (?⊤, α) |]ϕr ∧ [| (?⊤, β) |]ϕr)

π([| (α ; β, ?⊤) |]ϕr)≡π([| (α, ?⊤) |][| (β, ?⊤) |]ϕr)

π([| (?⊤, α ; β) |]ϕr)≡π([| (?⊤, α) |][| (?⊤, β) |]ϕr)

π([| (α∗, ?⊤) |]ϕr)≡π([| (α, ?⊤)∗ |]ϕr)

π([| (?⊤, α∗) |]ϕr)≡π([| (?⊤, α)∗ |]ϕr)

π([| (ϕAP , ?⊤) |]ϕr)≡π(ϕr ∨ ¬⌊ϕAP⌋L)

π([| (?⊤, ϕAP) |]ϕr)≡π(ϕr ∨ ¬⌊ϕAP⌋R)

π([| (?ϕ, ?⊤) |]ϕr)≡π(ϕr ∨ ¬⌊?ϕ⌋L)

π([| (?⊤, ?ϕ) |]ϕr)≡π(ϕr ∨ ¬⌊?ϕ⌋R)

Most cases in Definition 6 follow the semantics of LDLREL

formulas. We explain several interesting cases here.
• π(⟨⟨α∗

r ⟩⟩ϕr) yields π(⟨⟨αr ⟩⟩ϕr) if αr is test-only. If αr is not
test-only, π(⟨⟨α∗

r ⟩⟩ϕr) unfolds the loop a finite number of
times.

• π([|α∗
r |]ϕr) proceeds only if αr is test-only.

• π(ϕr ∧ ψr) yields a special product of π(ϕr) and π(ψr)
by taking conjunctions, respectively, of the first and second
elements. We are looking for a trace that satisfies both.

• π(ϕr ∨ ψr) combines the elements in both sets. The formula
is satisfiable if any element in either set is satisfiable.

• π([| (α, β) |]ϕr) expands cases of α and β to look for all
possible paths of [| (α, β) |]. By contrast, π(⟨⟨(α, β)⟩⟩ϕr)
directly combines α and β, respectively, with ϕ and
ψ into the modality of existence, i.e. (⟨α⟩ϕ, ⟨β⟩ψ).

The two modalities are treated differently because of
their semantic difference. In particular, ⟨⟨(α, β)⟩⟩(ϕr ∨ ψr)
is equivalent to ⟨⟨(α, β)⟩⟩ϕr ∨ ⟨⟨(α, β)⟩⟩ψr for any ϕr
and ψr. But [| (α, β) |](ϕr ∨ ψr) is not equivalent to
[| (α, β) |]ϕr ∨ [| (α, β) |]ψr in general.

• π([| (α, β) |]ϕr) ≡ {([α]ϕ, [β]ψ)} if π(ϕr) = {(ϕ, ψ)}, i.e.,
π(ϕr) has only one element. Here, ϕ and ψ are the formulas
that the left and right executions expect to satisfy.
The soundness theorem of the encoding is stated as follows:

Theorem 5 (Soundness of the encoding of LDLREL). For a
LDLREL formula ϕr and a renaming function ξ for ϕr,

if ∃σ, (σ, 0) |=
∨

(ϕ,ψ)∈π(ξ(ϕr))(ϕ ∧ ψ)

then ∃σL σR, (σL, σR, 0, 0) |=RL ϕr

The proof can be done by induction on ϕr (and simultaneous
induction on αr). Most cases are proven by the induction
hypothesis, as π follows closely the semantics of ϕr and αr.

